i

XRootD

XRootD Status and Plans

G. Amadio EOS Workshop 2024 15 Mar 2024

XRootD Development Team (2023/2024)

» Server / OFS /0SS

v

HTTP Protocol Plugin

e Andrew B. Hanushevsky e Cedric Caffy
e David Smith » HTTP Third-Party Copy (TPC) Plugin
» Client / XrdEc / Python e Brian Bockelmann
e David Smith e Cedric Caffy
e Guilherme Amadio e Elvin A. Sindrilaru
» CMake / Packaging / Testing / ClI » GSI Authentication Plugin
e Guilherme Amadio e Gerardo Ganis
» TLS e Guilherme Amadio
e Andrew B. Hanushevsky » XrdOssCsi
e David Smith e David Smith
e Guilherme Amadio » SciTokens Plugin
» XCache e Brian Bockelmann
e Alja Mrak Tadel e Derek Weitzel
e Matevz Tadel » EPEL / Debian Packaging

° Mattias Ellert

A.!?“
2

XRootD 5.6.0 Highlights

» XRootD 5.6.0

e Server

m Make maxfd configurable (default is 256k)

Use SHA-256 by default for signatures and message digests
Switch to a fixed set of DH parameters (compatibility with OpenSSL 1.0.2)
Allow specfication of minimum and maximum creation modes
Better detection of private IPV6 addresses (check also for unique local address)

m Include token information in the monitoring stream (subject, user, vorg, role, groups)
e XCache

m New function for file eviction

m Allow origin to be a locally mounted directory (e.g. XCache for Ceph/Lustre)
e C(Client

m New subcommand for xrdfs cache to allow for cache evictions

m Do not enforce TLS when --notlsok option is used in combination with root:// URL

m Increase default number of parallel event loops to 10 (affects XCache)

“A'Q)

https://github.com/xrootd/xrootd/releases/tag/v5.6.0
https://en.wikipedia.org/wiki/Unique_local_address

XRootD/Xcache in the context of Analysis Facilities

I/0 performance studies of analysis workloads on production and dedicated resources at CERN
A. Sciaba, J. Blomer, P. Canal, D. Duellmann, E. Guiraud, A. Naumann, V.E. Padulano, B. PanzerSteindel, A.J. Peters, M. Schulz, D. Smith

« Simplified analysis from CMS used as
technical demonstrator in IRIS-HEP

 Input dataset 3.6 TB, 2300 ROOT files, 1.5
GB/file consisting of CMS 2015 Open Data

Event loop

+ Columnar analysis paradigm “
« Distributed using a map-reduce concept * Measure performance and scalability
» Local parallelism on client node

e Rrginal St ear plsmentatiem + Data read from local node vs. directly from EOS

* ROOT-less, parallelism via Python futures or via xrootd vs. via an XCache instance
Bask * NOT a comparison between Coffea and RDF
* RDataFrame port (talk) + Simply, different workloads with different
behaviors

* ROOT-based, parallelism via implicit
multithreading, Dask and other

https://indico.jlab.org/event/459/contributions/11613/
https://indico.jlab.org/event/459/contributions/11613/
https://indico.jlab.org/event/459/contributions/11613/

XRootD/Xcache in the context of Analysis Facilities

Local access

. o > G e
« Scalability is excellent T 4 v
+ Some bottleneck appears for high numbers of vl Pl ks T4 H D DIS D D b d X‘ : h
workers i ’ N -) == a s e a c e Waliiock time Walllock time
+ Overcommitting does not help for Coffea, but it : PR t oot : .
increases throughput for RDF g l} 5
« Indication that Coffea is more CPU- ! .] - - & 4
constrained b ' i } t 4
The GPU efficiency comnarably high] + Compared performance of direct access to . i Vi .
M ‘I’ kp yingl Nebraska and CERN, cold cache and warm . i
not a strong bottleneci cache . B . § iz & &
& L SSD st is al - ! 10 10 w 1w 10 w
Local, fast SSD storage fs aways going |7 - e o o - -
Direct = Pseudo CPU effciend Pseudo-CPU effciency
« Aggregate read rates up to 3 GB/s Sk ol L L ol B 0 (' :""" oD Xckow w00 o ADewONute
) Nebraska 442116 608 13326 Nebraska ~ 5470+010 18841 1531%78 EAowim e L My

L]

Cornea | i, RDP

+ Performance results

Emciency (%)

&

. « Acold cache is slower than direct access! [5 :
Direct access to EOS i T T T T T R
+ Due to sparse file access and network latency s v
« Multiprocess scales very well s 7 D Rolnedoh :
+ Scalability still good when parallelism is Aapg{ 8 Coles 900)CRs | - -2 %0 .
via multiprocess + HDD XCache almost as good as SSD XCache - 4 s f
« RDF implicit multithreading does not perform well « RDF multithreaded scales very poorly “out of the box” §":: t i
with xrootd and many threads A B = | i P i 7)
5. RDE Via Dask is miliprocess; Scalis bettsr + All connections multiplexed into one = bottleneck! o ™ E 2 , ,
¥ g " | b © RDF HOD ACache
- CPU efficiency practically constant SDD XCache helps a lot, but scalability is still broken " ol § R Lt
around 60% with multiprocess parallel)
« /O time is not negligible anymore but no
bottlenecks -
+ Two EOS instances tested j i= D
+ EOSCMS by default, but CERNBOX produces fwl w f
similar (slightly worse) results “ls -

XRootD/Xcache in the context of Analysis Facilities

Local access

Scalability is excellent

+ Some bottleneck appears for high numbers of

workers

Overcommitting does not help for Coffea, but it

increases throughput for RDF

« Indication that Coffea is more CPU-
constrained

The CPU efficiency comparably high
/0 not a strong bottleneck

Local, fast SSD storage is always going
to work well

Aggregate read rates up to 3 GB/s

Scalability with ROOT multithreading and
XCache can be improved

+ XRD_PARALLELEVTLOOP=10 on the client
largely improves Xrootd performance

« Prevent the connection multiplexing by adding
different client names to the file names

root://clientl@eoscms.cern.ch//eos/myfile.root

Direct access to EOS

Scalability still good when parallelism is
via multiprocess

+ RDF implicit multithreading does not perform well
with xrootd and many threads

+ RDF via Dask is multiprocess, scales better

« CPU efficiency practically constant
around 60% with multiprocess parallel

PN)

« /O time is not negligible anymore but no
bottlenecks
+ Two EOS instances tested

+ EOSCMS by default, but CERNBOX produces
similar (slightly worse) results

Enormous impact when reading from
XCache

» Obvious as it is a single server and multiplexing a
big bottleneck

Effect negligible when reading from EOS

« Files already spread over hundreds of disk
servers, multiplexing irrelevant

Rate (Mis)

Efficiency (%)
IR EEE

RDF + Xrootd performance optimization

Wallclock time

Wallclock time

« ROF T HDD XCache
= ROF MT optimized HOD XCache

AR

« ROF MT EOS diect access
= ROF MT optimized EOS direct access

3 t
jo '
:
;
: v
L]
£ 2
sy e v
; e . e —
L + ROF MY aptmaed 10O KCache = RoF M optmaen 05 arect acces
+ . = +
7 i
i
N / (_ o = f 1 . — (=~
2=k e ; S
A EIHE) i D)
QNSNS INED. =7 5 —_
. 5
+
. i
P B S e
. L1
Total read rate Total read rate
e T
= RO MT optmama HOD eache = RO M oeumaed E05 ectacces l

ate (Wils)
. EBYEEBZE

XRootD/Xcache in the context of Analysis Facilities

F o a— XCache server with internal
- I AR clustering performs much better
L T for ROOT multi-threaded analysis.
LI w wm E om
. h} I' Cote 50 B . e Wallclock time
80] = 2 i 5 80 . . == = - ~
il Cofffea | i RDE : [Z o
N . } . . o = . . ks
‘ 2 _ n
= 20 20 60 80 PP b 0° 1 . ”
TR et T e 87 . No “fake clients
- L T B £ . trick needed here.
;x :m . } "
2 w0 . Elsu . . 10° 1 l ' I +
: ' b .'+ ¢ i o RDFHDD xca(n.e 10° 10t 10*
. s s0{ & = RDF SSD XCache Workers

AQ?“
W

XRootD 5.6.0 Highlights

» XRootD 5.6.0 (cont.)
e Build System / C++
m Modernization of CMake build system (requires CMake 3.16+)
m Support building against musl libc (e.g. on Alpine Linux, Void Linux)
m Make codebase C++17 ready (migration to C++17 as baseline in XRootD 5.7.0)
m XrdCeph git submodule merged back into the main repository
m Build option ENABLE_CRYPTO removed. OpenSSL always required with XRootD 5.x
e Testing and Continuous Integration
m Updated continuous integration system based on GitHub Actions
= New xrd-docker to automate building/running container-based tests
m New test.cmake script added to automate configure/build/test cycle
e RPM/DEB Packaging
m Rewrite of both DEB/RPM packaging to simplify building official repository
e Python bindings
m Better support for Python 3.x, rewrite of build system in accordance with PEP517

“A'Q)

https://github.com/xrootd/xrootd/releases/tag/v5.6.0
https://github.com/xrootd/xrootd/blob/master/docker/xrd-docker
https://github.com/xrootd/xrootd/blob/master/test.cmake
https://peps.python.org/pep-0517/

XRootD 5.6.0 Highlights

» XRootD 5.6.0 (cont.)

e XrdHttp
m Include Accept-Ranges in HEAD response
m Allow XRootD to return trailers indicating failure
m Report cache object age for caching proxy mode
m Return 405 instead of 500 error code on deletion of non-empty directory
m Return 404 instead of 500 error code on GET request on non-existent file

e Plugins
m GSI: Add option to display DN when it differs from entity name
m ZTN: Allow to point to a token file using cgi ?xrd.ztn=tokenfile
m ZTN: Allow option -tokenlib none to disable token validation (used by EOS)

e Miscellaneous
m Updated docs: README.md, INSTALL.md, TESTING.md, CONTRIBUTING.md
m Sandboxing / hardening settings added to systemd service units (commented out)
m Make output of xrdcrc32c tool consistent with xrdadler32

“A'Q)

https://github.com/xrootd/xrootd/releases/tag/v5.6.0
https://github.com/xrootd/xrootd/blob/master/README.md
https://github.com/xrootd/xrootd/blob/master/docs/INSTALL.md
https://github.com/xrootd/xrootd/blob/master/docs/TESTING.md
https://github.com/xrootd/xrootd/blob/master/docs/CONTRIBUTING.md

XRootD on GitHub

» New README in Markdown
» GitHub Actions
e (Continuous Integration
e RPM /DEB Packages
e Python wheels
e QEMU cross-platform
» CDash Dashboard

https://my.cdash.org/index.php?project=XRootD

Q xrootd / xrootd

<> Code (© Issues 95

[Files

¥ master -
Q Go to file

> B

> BB github

> B bindings

> B cmake

B debian

B8 docker
B docs

8 packaging
B sc

B tests

B ups

B uiils

O .gitattributes

O .gitignore

O .gitlab-ciymi

O mailmap

D CMakelists.txt

D coryiNG

D corYING.BSD

O copYING.LGPL

[CTestConfig.cmake
O Doxyfile

D ucense

[MANIFEST.in

D READMEmd

D version

[cmake_uninstall.cmake.in
[gen-tarball.sh

O genversion.sh

O pyproject.toml

0 setupoy

Q Type (7] to search D

+- o n e @

19 Pullrequests 3 O Discussions (@ Actions [0 Projects @ Security | Insights 53 Settings

4

Q

xrootd / README.md (3

€ amadio Update READMEmd @B cle671e . 3weeks ago O History

[Preview ‘ Code | Blame 117 lines (89 loc) - 4.37 KB Rw O & 2 - =

B8 XRootD

XRootD: eXtended ROOT Daemon

The XRootD project provides a high-performance, fault-tolerant, and secure solution for handling massive amounts of data distributed
across multiple storage resources, such as disk servers, tape libraries, and remote sites. It enables efficient data access and movement
in a transparent and uniform manner, regardless of the underlying storage technology or location. It was initially developed by the
High Energy Physics (HEP) community to meet the data storage and access requirements of the BaBar experiment at SLAC and later
extended to meet the needs of experiments at the Large Hadron Collider (LHC) at CERN. XRootD is the core technology powering the
EOS distributed filesystem, which is the storage solution used by LHC experiments and the storage backend for CERNBox. XRootD is
also used as the core technology for global CDN deployments across multiple science domains.

XRootD is based on a scalable architecture that supports multi-protocol communications. XRootD provides a set of plugins and tools
that allows the user to configure it freely to deploy data access clusters of any size, and which can include sophisticated features such
as erasure coded files, various methods of authentication and authorization, as well as integration with other storage systems like
ceph.

Documentation

General documentation such as configuration reference guides, and user manuals can be found on the XRootD website at
http://xrootd.org/docs.html.

Supported Operating Systems

XRootD is officially supported on the following platforms:

* RedHat Enterprise Linux 7 or later and their derivatives
o Debian 11 and Ubuntu 22.04 or later
* macOS 11 (Big Sur) or later

Support for other operating systems is provided on a best-effort basis and by contributions from the community.

Installation Instructions

XRootD is available via official channels in most operating systems. Installation via your system's package manager should be

https://github.com/xrootd/xrootd
https://github.com/xrootd/xrootd
https://my.cdash.org/index.php?project=XRootD

°
= O xrootd / xrootd Q Type /] to search > +~ |00 a

<> Code (Issues 95 1% Pull requests 3 Q) Discussions () Actions [Projects) Security |22 Insights 3 Settings

Actions New workflow QEMU Q Filter workflow runs cee

QEMU.yml
All workflows

Workflows 1 workflow run Event ~ Status v Branch ~ Actor ~
Cl
DEB This workflow has a workflow_dispatch event trigger. Run workflow ~
Python Use workflow from
| Qemu W aEmu . W r—
QEMU #1: Manually run by amadio e asier
RPM ey
fedora s
Management e
8 Cachiss Architecture *
$390x s

Runners

Run workflow

https://github.com/xrootd/xrootd/actions/workflows/QEMU.yml
https://github.com/xrootd/xrootd/actions/workflows/QEMU.yml

[Files xrootd / .github / workflows / QEMU.yml M Top
Blame 57 lines (49 loc) - 1.16 KB Rw @ & 2 ~ [
¥ master - + | Q
30
Q Gotofile it 31 concurrency:
32 group: ${{ github.workflow }}-${{ github.ref }}-${{ inputs.os }}-${{ inputs.arch }}
> - .ci = 33 cancel-in-progress: true
34
v @ .github/workflows 36 e
D Cl.yml 36 run:
37 shell: bash
[® DEByml 38
I D QEMU.ymI 39 env:
40 DOCKER: podman
O RPM.yml a1
42 jobs:
D pythonyml 43 buildx:
> . bindings a4 name: QEMU (${{ inputs.os }}-${{ inputs.arch }})
45 runs-on: ubuntu-latest
> BB cmake 46
> @ debian o siehs
48 - name: Clone repository
> . docker 49 uses: actions/checkout@v3
50 with:
> @ docs 51 fetch-depth: @
> @ packaging 32
53 - name: Setup QEMU for cross-building images
> . src 54 run: docker run --rm --privileged multiarch/gemu-user-static --reset -p yes
> B tests =
56 - name: Cross-build container with docker/podman buildx
> B ups 57 run:lcd docker && ./xrd-docker buildx ${{ inputs.os }} ${{ inputs.arch }}I
> BB utils

https://github.com/xrootd/xrootd/actions/workflows/QEMU.yml
https://github.com/xrootd/xrootd/actions/workflows/QEMU.yml
https://github.com/xrootd/xrootd/actions/workflows/QEMU.yml
https://github.com/xrootd/xrootd/actions/workflows/QEMU.yml

XRootD on GitHub

» New README in Markdown
» GitHub Actions
e (Continuous Integration
e RPM /DEB Packages
e Python wheels

e QEMU cross-platform

» CTest config/build/test script
» CDash Dashboard

https://my.cdash.org/index.php?project=XRootD

[Files

¥ master -
Q Go to file

> B i

> B github

> BB bindings

> I cmake

> BB debian

> I docker

v @ docs

> BB man
[CMakeListstxt
[CONTRIBUTING.md
[INSTALLmd
() README_IPVA_To_IPV6
[ReleaseNotes.txt

| O TESTING.md

BB packaging
W src

B tests

o ups

B uiils

O gitattributes
O gitignore

O gitlab-ciyml
O mailmap

[CMakelistsitxt
[copviNG

[corvING.BSD
[coPvING.LGPL
[CTestConfig.cmake
O Doxyfile

[ucense

[MANIFEST.in
(3 READMEmd
[vERsiON

[cmake_uninstall.cmake.in

4

Q

Preview Code Blame 360 lines (305 loc) - 16.8 KB

xrootd / docs / TESTING.md M Top

Rw D & 2 ~

Running XRootD Tests on other platforms with Docker and/or Podman

If you would like to run XRootD tests on other platforms, you can use the xrd-docker script and associated Dockerfile s in the
docker/ subdirectory. The steps needed are described below.

Create an XRootD tarball to build in the container

The first thing that needs to be done is packaging a tarball with the version of XRootD to be used to build in the container image. The
command xrd-docker package by default creates a tarball named xrootd.tar.gz in the current directory using the HeaD of the
currently checked branch. We recommend changing directory to the docker/ directory in the XRootD git repository in order to run
these commands. Suppose we would like to run the tests for release v5.6.4. Then, we would run

$ xrd-docker package v5.6.4 @

to create the tarball that will be used to build the container image. The tarball created by this command is a standard tarball created
with git archive . Inside it, the VersION file contains the expanded version which is used by the new spec file to detect the version of
XRootD being built. You can also create a source RPM with such tarballs, but they must be built with rpmbuild --with git as done in
the Cl builds and the Dockerfile s in the docker/build/ subdirectory.

Build the container image

The next step is to build the container image for the desired OS. It can be built with either docker or podman . The xrd-docker script
has the build command to facilitate this. Currently, supported OSs for building are CentOS 7, AlmaLinux 8, AlmaLinux 9, Fedora. The
command to build the image is simply

$ xrd-docker build <0S> 5]

where <0s> is one of centos7 (default), almas, almag,or fedora.The name simply chooses which Dockerfile is used from the
build/ directory, as they are named Dockerfile.<0s> for each suported OS. It is possible to add new Dockerfile s following this
same naming scheme to support custom setups and still use xrd-docker build command to build an image. The images built with
xrd-docker build are named simply xrootd (latest being a default tag added by docker), and an extra xrootd:<0s> tag is added to
allow having it built for multiple OSs at the same time. The current Dockerfile s use the spec file and build the image using the RPM
packaging workflow, installing dependencies as declared in the spec file, in the first stage, building the RPMs in a second stage, then,
in a third stage starting from a fresh image, the RPMs built in stage 2 are copied over and installed with yum or dnf .

Switching between docker and podman if both are installed

The xrd-docker script takes either docker or podman if available, in this order. If you have only one of the two installed, everything
should work without any extra setup, but if you have both installed and would like to use podman instead of docker for building the
images, it can be done by exporting an environment variable:

$ export DOCKER=$(command -v podman) @
$ xrd-docker build # uses podman from now on...

Appendix

https://github.com/xrootd/xrootd/blob/master/docs/TESTING.md
https://github.com/xrootd/xrootd/blob/master/docs/TESTING.md
https://my.cdash.org/index.php?project=XRootD

XRootD on GitHub

» New README in Markdown
» GitHub Actions
e (Continuous Integration
e RPM /DEB Packages
e Python wheels

e QEMU cross-platform

» CTest config/build/test script
» CDash Dashboard

https://my.cdash.org/index.php?project=XRootD

[D Files

¥ master -

Q Gotofile

> B i

> BB github

> B bindings

> M cmake

> B debian

> BB docker

v @ docs

> I8 man
O CMakeLists.txt
(3 CONTRIBUTING.md
D INSTALLmd
[README_IPVA_To_IPV6
[ReleaseNotes.txt

[TESTING.md

B8 packaging
| src

B tests

. ups

> I utils

gitattributes
.gitignore
gitlab-ciyml
mailmap
CMakeLists.txt
COPYING

COPYING.BSD

CTestConfig.cmake
Doxyfile

LICENSE
MANIFEST.in
READMEmd
VERSION

D
D
D
D
D
D
(k]
[COPYING.LGPL
(k]
D
B
D
D
D
[}

cmake_uninstall.cmake.in

[Preview J Code Blame 360 lines (305 loc) - 16.8 KB Rw @ & 2 ~

Configuring and Running XRootD tests with CTest

XRootD tests are divided into two main categories: unit and integration tests that can be run directly with CTest, and containerized
tests that are required to be run from within a container built with docker or podman. This document describes how to run the former,
that is, the tests that are run just with CTest. This document assumes you are already familiar with how to build XRootD from source. If
you need instructions on how to do that, please see the INSTALL.md file. There you will also find a full list of optional features and
which dependencies are required to enable them.

Enabling tests during CMake configuration

XRootD unit and integration tests are enabled via the CMake configuration option -DENABLE_TESTS=ON . Unit and integration tests may
depend on CppUnit or GoogleTest (a migration from CppUnit to GoogleTest is ing). Therefore, the devel packages for
CppUnit and GoogleTest (i.e. cppunit-devel and gtest-devel on RPM-based distributions) are needed in order to enable all
available tests. Here we discuss how to use the test.cmake CTest script to run all steps to configure and build the project, then run all
tests using CTest. The script test.cmake can be generically called from the top directory of the repository as shown below

xrootd § ctest test. cmake @
Using CMake cache file config.cmake
Run dashboard with model Experimental
Source directory: xrootd
Build directory: xrootd/build
Reading ctest configuration file: xrootd/CTestConfig.cmake
Site: example.cern.ch (Linux - x86_64)
Build name: Linux GCC 12.3.1 RelWithDebInfo
Use Experimental tag: 20230622-8712
Updating the repository: xrootd
Use GIT repository type
01d revision of repository is: 6fce4s6ast 2502 13103
New revision of repository is: 6fc 13103
Gathering version information (one . per revision):

Configure project
Each . represents 1624 bytes of output

size of output: 4K

Build project
Each symbol represents 1024 bytes of output.
“1* represents an error and '*' a warning.

Size: 49K

. size of output: 52K
@ Compiler errors
@ Compiler warnings
Test project xrootd/build

Start 1: Xrdcl:
1/23 Test #1:
Start 2:
2/23 Test #2:
Start 3: XrdCl::URLTest.InvalidURLs

Passed ©.81 sec

Passed ©.12 sec

3/23 Test #3: XrdCl::URLTest.InvalidURLS «.....eeeneneennnns Passed ©.81 sec
Start 4: XrdHttpTests.checksumHandlerTests

4/23 Test #4: XrdHttpTests.checksumHandlerTests Passed ©.81 sec
Start 5: XrdHttpTests.checksumHandlerSelectionTest

5/23 Test #5: XrdHttpTests.checksumHandlerSelectionTest Passed .01 sec

Start 6: XrdCl::Poller

6/23 Test #6: Passed 5.81 sec

https://github.com/xrootd/xrootd/blob/master/docs/TESTING.md
https://github.com/xrootd/xrootd/blob/master/docs/TESTING.md
https://my.cdash.org/index.php?project=XRootD

XRootD on GitHub

» New README in Markdown
» GitHub Actions
e (Continuous Integration
e RPM /DEB Packages
e Python wheels

e QEMU cross-platform

» CTest config/build/test script
» CDash Dashboard

https://my.cdash.org/index.php?project=XRootD

[Files

>

>

>

>

>

>

¥ master -

Q Gotofile

.

| github
B bindings
B cmake
B debian
BB docker

v @ docs

> B man
O CMakelists.txt
[CONTRIBUTING.md
O INSTALLmd
[README_IPV4_To_IPV6
[ReleaseNotes.txt
[TESTING.md
B packaging
B src
0 tests
. ups
W utils
0O gitattributes
O .gitignore
O gitlab-ciyml
O mailmap
O CMakelists.txt
D coryiNG
D copyING.BSD
[copvING.LGPL
[CTestConfig.cmake
Doxyfile
LICENSE
MANIFEST.in
README.md
VERSION

D
D
s}
D
D
D

cmake_uninstall.cmake.n

4

Q

@ Code | Blame 360 lines (305 loc) - 16.8 K8

xrootd / docs / TESTING.md M Top

Customizing the Build

Selecting a build type, compile flags, optional features, etc

Since the script is targeted for usage with continuous integration, it tries to load a configuration file from the .ci subdirectory in the
source directory. The default configuration is in the config.cmake file. This file is used to pre-load the CMake cache. If found, it is
passed to CMake during configuration via the -c option. This file is a CMake script that should only contain CMake set()
commands using the CACHE option to populate the cache. Some effort is made to detect and use a more specific configuration file
than the generic config.cmake that is used by default. For example, on Ubunty, a file named ubuntu.cmake will be used if present.
The script also tries to detect the version of the OS and use a more specific file if found for that version. For example, on Alma Linux 8,
one could use almalinuxs.cmake which would have higher precedence than almalinux.cmake . The default config.cmake file will
enable as many options as possible without failing if the dependencies are not installed, so it should be sufficient in most cases.

The behavior of the test.cmake script can also be influenced by environment variables like cC, €XX, CXXFLAGS, CMAKE_ARGS ,
CMAKE_GENERATOR , CMAKE_BUILD_PARALLEL_LEVEL , CTEST_PARALLEL_LEVEL ,and CTEST_CONFIGURATION_TYPE . These are mostly self-
explanatory and can be used to override the provided defaults. For example, to build with clang and use ninja as CMake generator,
one can run:

xrootd $ env CC=clang CXX=clang++ CMAKE_GENERATOR=Ninja ctest -V -S test.cmake @
For performance analysis and profiling with perf , we recommend building with

xrootd $ CXXFLAGS='-fno-omit-frame-pointer’ ctest -V -C RelWithDebInfo -S test.cmake @

For enabling link-time optimizations (LTO), we recommend using

CXXFLAGS="-flto -| dr -Werror=1to-typ tch - rict-aliasing’ ©

This turns some important warnings into errors to avoid potential runtime issues with LTO. Please see GCC's manual page for
descriptions of each of the warnings above. XRootD also support using address and thread sanitizers, via the options -
DENABLE_ASAN=ON and -DENABLE_TSAN=ON , respectively. These should be enabled using cMaAKE_ARGS , as shown below

$ env CMAKE_ARGS="-DENABLE_TSAN=1" ctest -V -S test.cmake 18]

Note that options passed by setting cmaKe_ares in the environment have higher precedence than what is in the pre-loaded cache file,
so this method can be used to override the defaults without having to edit the pre-loaded cache file.
Enabling coverage, memory checking, and static analysis
The test.cmake has are several options that allow the developer to customize the build being tested. The main options are shown in
the table below:
Option Description
-DCOVERAGE=ON

Enables test coverage analysis with gcov

-DMEMCHECK=ON Enables memory checking with valgrind

https://github.com/xrootd/xrootd/blob/master/docs/TESTING.md
https://github.com/xrootd/xrootd/blob/master/docs/TESTING.md
https://my.cdash.org/index.php?project=XRootD

XRootD on GitHub

» New README in Markdown
» GitHub Actions
e (Continuous Integration
e RPM /DEB Packages
e Python wheels
e QEMU cross-platform
» CTest config/build/test script
» CDash Dashboard

https://my.cdash.org/index.php?project=XRootD

'&A XRootD < PREV Dashboard Calendar Project
b 4
Continuous 16 buids [view timeline]
Update Configure Bui Test
Site Build Name Revision Error ~ Wamn Error Warn Mot Fail Pass Time Start Time v
GitHub Actions {) Fedora Linux 39 GCC 13.2.1 RelWithDebinfo Ninja (devel)
22 hours ago
(xrootd)
CHHUD petions /) CentOS Linux 7 GCC 7.3.1 RelWithDebinfo (devel) [22 hours ago
(xrootd)
f"”“b) R O AmaLinux 8.9 GCC 8.5.0 RelWithDebinfo (devel) [] 22 hours ago
GitHub Actions macOS 12.7.3 AppleClang 14.0.0.14000029 RelWithDebinfo 22 hours ago
(xrootd) (devel)
()
S)’W‘”‘s A Amalinux 9.3 GCC 11.4.1 RelWithDebinfo (devel) [LLHEIEED
g’:ol::fm"s A Ubuntu 22.04.4 LTS GCC 11.4.0 RelWithDebinfo (devel) [22 hours ago
(G)::ol::) A Alpine Linux v3.19 GCC 13.2.1 RelWithDeblnfo (devel) | 22 hours ago
GitHub Actions Ubuntu 22.04.4 LTS Clang 14.0.0 RelWithDeblnfo (devel) T
(xrootd) g
GitHub Actions {) Fedora Linux 39 GCC 13.2.1 RelWithDeblnfo Ninja (devel) Mar 13, 2024 - 01:54
(xrootd) w uTC
GitHub Actions s = Mar 13, 2024 - 01:54
(xrootd) A CentOS Linux 7 GCC 7.3.1 RelWithDebinfo (devel) ["] uTe
GitHub Actions Mar 13, 2024 - 01:53
0) A AimaLinux 8.9 GCC 8.5.0 RelWithDeblinfo (devel) [ute
RO ACCS A AlmaLinux 9.3 GCC 11.4.1 RelWithDebinfo (devel) [] Mar13, 2024 - D55
(xrootd)
GitHub Actions) Ubuntu 22.04.4 LTS Clang 14.0.0 RelWithDebinfo (devel) Mar 13, 2024 - 01:53
(xrootd) utc
GitHub Actions Mar 13, 2024 - 01:53
(xrootd)) Ubuntu 22.04.4 LTS GCC 11.4.0 RelWithDebinfo (devel) [e
GitHub Actions macOS 12.7.3 AppleClang 14.0.0.14000029 RelWithDebinfo Mar 13, 2024 - 01:53
(xrootd) (devel) utc
GitHub Actions B Mar 13, 2024 - 01:53
(xrootd) A Alpine Linux v3.19 GCC 13.2.1 RelWithDeblnfo (devel) | uTe
Items per page | Al
CDash v3.3.0-1c2-6-ga975ec23d © Kitware | Report problems | View as JSON | 0.06s (0.055)

_ CDASN curentTestng Day 2024-03-14 | Startod ot 0700 UTC

https://my.cdash.org/index.php?project=XRootD
https://my.cdash.org/index.php?project=XRootD
https://my.cdash.org/index.php?project=XRootD

Next Release: XRootD 5.7.0

» Move to C++17 standard as baseline

» Remove using namespace std; from all headers and source files

» Allow changing C++ standard via CMAKE_CXX_STANDARD

» Update min/default RSA key bits to 2048

» Full migration of testing infrastructure to GoogleTest (CppUnit tests removed)
» New only-if-cached directive for Xcache

» New tpc.route option to force connecting back via same IP on HTTP-TPC

» Disallow renegotiation for TLSv1.2 and earlier

Future Plans

» Continue to extend testing coverage
e HTTPR, TPC, XCache, authentication methods (host, krb5, gsi, tokens, sss, unix)

» Resolve at least ~20% of outstanding enhancements per year
» Support for alternative protocols (e.g. SFTP, an EGI request)

» Native Oauth2 plugin
e Enable using CERN SSO tokens with XRootD/EOS

» SSH Authentication

e SSH keys/certificates as possible alternative to X509 certificates

» Better, multi-protocol integration with FTS
e Reduced interface needed for file transfers

» Range cloning of files to allow updating of EC files
» Plugin for handling RUCIO datasets within ZIP archives

XRootD Packaging and Distribution

» New official RPM repositories, include Alma 9, Fedora

https://xrootd.slac.stanford.edu/dload.html#official-rpm-repositories
» RPM and DEB packaging scripts available in official GitHub repository

» XRootD is available via official channels in most distributions already

e Alma, Arch, CentOS, Debian, Fedora, Gentoo, Manjaro, Raspbian, Rocky, Ubuntu, etc

» XRootD is also available on repositories that work across other OSs

e Homebrew, macPorts, Nix, Spack, conda, etc

» Installation via official channels strongly encouraged

https://xrootd.slac.stanford.edu/dload.html#official-rpm-repositories

XRootD

XRootD 5.5.x Highlights

» XRootD 5.5.2

e Enable ZTN authentication with macaroons-based tokens
e Extend number of parallel copies from 4 to 128 (--parallel option to xrdcp)

» XRootD 5.5.3

e Support user-provided script for computing checkums

» XRootD 5.5.4

e ZTN plugin enabled by default
e Fixes for authentication failures across daylight savings change
e Support certificates with dates in year 2049 or later

» XRootD 5.5.5

e Enable XrdCIProxy plugin to work with pgRead
e Fix creation of zip archives with many entries
e Fix for mixing of reused file handles coming from external table (seen on EOS AMS)

“A'Q)

https://github.com/xrootd/xrootd/releases/tag/v5.5.2
https://github.com/xrootd/xrootd/releases/tag/v5.5.3
https://github.com/xrootd/xrootd/releases/tag/v5.5.4
https://github.com/xrootd/xrootd/releases/tag/v5.5.5

XRootD 5.6.x Highlights

» XRootD 5.6.1

e Use kernel provided uuid on macOS
e Set RPATH that works for binaries and libraries on macOS

» XRootD 5.6.2

HTTP: Fix chunked PUT creating empty files

SciTokens: Update maximum header size and line length in INI files

Fix template for default ZTN token location

Change the thread-id returned to OpenSSL 1.0.x to improve performance

Insert CRLs containing critical extensions at the end of the bundle

XrdCIHttp: Add pgWrite support to the HTTP client plugin

Export readv comma separated limits via XRD_READV_LIMITS environment variable
Python: Allow build customization via environment variables (e.g. CXX, CXXFLAGS)
Fix promotion of root:// URLs to use TLS encryption (bug introduced in 5.6.0)

“A'Q)

https://github.com/xrootd/xrootd/releases/tag/v5.6.1
https://github.com/xrootd/xrootd/releases/tag/v5.6.2

XRootD 5.6.x Highlights

» XRootD 5.6.3

Export project version in XRootDConfig.cmake module
Create environment file within xrd.adminpath

Return an error if xrdfs rm fails to delete any file

Initial packet marking support in HTTP TPC

» XRootD 5.6.4

Use full certificate chain for verification

Migrate tests to GoogleTest and run without containers

Add integrity check for headers and fix header dependency issues

Fixes on SPARC architecture and GNU/Hurd (external contributions)

Fix crash on pss.origin directive without specifying a port (uses protocol default)

» XRootD 5.6.5

e Support GCC 14
e Export project version in XRootDConfig.cmake module

A.!?“
2

https://github.com/xrootd/xrootd/releases/tag/v5.6.3
https://github.com/xrootd/xrootd/releases/tag/v5.6.4
https://github.com/xrootd/xrootd/releases/tag/v5.6.5

XRootD 5.6.x Highlights

» XRootD 5.6.6

Use full certificate chain for verification

Migrate tests to GoogleTest and run without containers

Add integrity check for headers and fix header dependency issues

Fixes on SPARC architecture and GNU/Hurd (external contributions)

Fix crash on pss.origin directive without specifying a port (uses protocol default)

» XRootD 5.6.7

e Fix crash at teardown when using copies with multiple streams
e Fix TPC initialization to take into account control stream (was always using 2 streams before)

» XRootD 5.6.8

e Only claim to be TLS capable if TLS initialization succeeds (--notlsok no longer needed)
e Create CDash dashboard for XRootD and enable submissions in test.cmake
e Fix build on FreeBSD

“A'Q)

https://github.com/xrootd/xrootd/releases/tag/v5.6.6
https://github.com/xrootd/xrootd/releases/tag/v5.6.7
https://github.com/xrootd/xrootd/releases/tag/v5.6.8
https://my.cdash.org/index.php?project=XRootD

XRootD 5.6.x Highlights

» XRootD 5.6.9

e Python
m Fix iteration over a file with Python3
m Fix crash with raw strings in prepare call
e HTTPTPC
m Fix 500 server response code if X-Number-Of-Streams > 100
e XrdSciTokens
m Add stat permissions to create, modify and write operations
m Allow creation of parent directories if necessary
m Fix bug when scope includes basepath or /

l&?“
W

https://github.com/xrootd/xrootd/releases/tag/v5.6.9

XRootD

