Comparison of High-Performance Distributed File Systems on two Platforms: Linux and Windows

The superiority of EOS-based Comtrade Distributed File System (CDFS) for Earth Observation Data Storage

Gregor Molan

Comtrade Group / Comtrade360

The Rising Quantity of Earth Observation Data

- The proliferation of Earth observation satellites has led to a surge in data generation, posing significant data storage and management challenges.
- History of Earth observation data collection
- The exponential growth of new satellites, including nanosatellites

Need for High-Performance Data Storage in Earth Observation

The demand for high-performance data storage in Earth observation is essential for:

- Extracting,
- Storing,
- Processing,
- Analysing

Insights from the vast volumes of satellite data.

Data Volume Challenge

- Increasing number of satellites
- Increasing data collection size
- Increasing data requests from users

The consequence:

 Managing the sheer volume of Earth observation data efficiently is a critical challenge.

Data Accessibility Challenge

- Crucial needs for timely analysis and decision-making are:
 - Fast access to space data
 - Reliable access to space data.

Comparison of High-Performance File Systems

- Comparison of the following aspects in rigorous speed-testing
 - EOS based CDFS
- EOS distributed file system has been subjected alongside other highperformance file systems, such as Ceph, Lustre, IBM Spectrum Scale, and Hadoop, demonstrating its superiority in various aspects.

Advantages of EOS (CDFS) for Earth Observation Data Storage

- CDFS offers seamless scalability to accommodate the growing volume of Earth observation data.
- Reliability for Earth Observation Data Storage.
- CDFS ensures data integrity and availability, which is critical for mission-critical applications.
- CDFS provides high-performance storage capabilities, enabling rapid data access and analysis.

CDFS's Superiority in Handling Earth Observation Data

- CDFS's architecture and features
- Well-suited for handling
 - The unique requirements of Earth observation data
 - Handling large volumes
 - Handling diverse formats
 - Satisfying real-time processing needs

CDFS: EOS Implementation Prepared to Collect Earth Observation Data

The initial set-up prepared at Comtrade as a PoC to collect and handle Earth observation data:

- Management Nodes:
 - 32 threads, 2x Intel® Xeon® Silver 4208 Processor
 - 384 GB RAM, 2x 2 TB SSDs
- Storage Nodes:
 - 32 threads, 2x Intel® Xeon® Silver 4208 Processor
 - 64 GB RAM, 1x 2 TB SSD, 6x 2 TB HDDs
- Client Node Nodes:
 - 12 threads, Intel® Core™ i5-12400 Processor
 - 16 GB RAM, 1 TB SSD

Prospects and Enhancements for CDFS in Earth Observation

Potential future enhancements and developments in EOS that could further improve its capabilities for Earth observation data storage and management:

- Enhance EOS installation.
- Specify the EOS parameters to scale between throughput speed, latency, and reliability.
- Specify the EOS source code files and header files to additionally finetune the dependences between throughput speed, latency, and reliability.

Key Takeaways and Conclusion

- Overview of the key takeaways of EOS to emphasise EOS's role as a superior Earth observation data storage solution.
- Advantages of spreading EOS and CDFS to Earth observation data storage.
- Recommendations for the EOS team considering extending EOS for Earth observation data needs.

Gregor Molan

gregor.molan@comtrade.com
gregor.molan@cern.sh

