Unitarity effects in elastic scattering at the LHC

Emerson Luna *Instituto de Física Universidade Federal do Rio Grande do Sul*

New Trends in High-Energy and Low-x Physics Sfantu Gheorghe, Romania, 2024

∗ in collaboration with M. Maneyro and M. Peláez

Outline

■ Unitarization Schemes

 \Rightarrow Born amplitudes: Pomeron and Odderon inputs

■ The tension between the TOTEM and ALFA/ATLAS measurements

■ Results

■ Conclusion and Perspectives

 \blacksquare In order to describe the observed increase of $\sigma_{tot}(s)$, the Pomeron should have a supercritical intercept given by $\alpha_{\mathbb{P}}(0) = 1 + \epsilon$ with $\epsilon > 0$

 \Rightarrow the behavior of the total cross section for $\alpha_{\mathbb{P}}(0) > 1$ betokens the violation of the Froissart-Martin limit at some energy scale

 \blacksquare It is expected that unitarity can be enforced in high-energy hadron-hadron interactions by the inclusion of the exchange series $\mathbb{P} + \mathbb{P} \mathbb{P} + \mathbb{P} \mathbb{P} \mathbb{P} + \ldots$

 $\Rightarrow \alpha_{\mathbb{P}}(0)$ is an effective power representing *n*-Pomeron exchange processes, *n* ≥ 1

Despite the advances in understanding the nature of the Pomeron in the last decades, we still need to learn how to fully compute the contributions from multiple-Pomeron exchange processes with *n* ≥ 3 On the other hand, it is well-established that some unitarization schemes sum appropriately rescattering diagrams representing the exchange of several particular multiparticle states

 \Rightarrow these schemes are primarily based on phenomenological arguments

 \Rightarrow they are effective procedures for taking into account many of the properties of unitarity in the *s*-channel or,

at the very least,

for preventing the Froissart-Martin bound for σ*tot* from being violated

■ We focus on two key unitarization schemes: the eikonal and the *U*-matrix approaches

Unitarization Schemes

E Certain distinctive features of the high-energy $A(s, t)$ are better illuminated when examined in the impact parameter *b*-representation:

$$
2 \text{ Im } H(s, b) = |H(s, b)|^2 + G_{in}(s, b) \tag{1}
$$

 \Rightarrow $G_{in}(s, b)$ is the inelastic overlap function

 \Box After the integration over two-dimensional impact parameter space:

$$
\sigma_{tot}(s) = \sigma_{el}(s) + \sigma_{in}(s)
$$

where

$$
\sigma_{tot}(s) = \frac{4\pi}{s} \text{Im } A(s, t = 0) = 2\pi \int_0^\infty b \, db \, 2 \, \text{Im } H(s, b)
$$

$$
\sigma_{el}(s) = \frac{\pi}{s^2} \int_{-\infty}^0 dt \, |A(s,t)|^2 = 2\pi \int_0^{\infty} b \, db \, |H(s,b)|^2
$$

$$
\sigma_{in}(s)=2\pi\!\!\int_{0}^{\infty}\!\!b\,db\,\left(2\,\text{Im}H(s,b)-|H(s,b)|^2\right)
$$

 \Box After defining a function

$$
\rho(s,b) = \frac{\operatorname{Re} H(s,b)}{\operatorname{Im} H(s,b)}
$$

and solving the quadratic equation for $Im H(s, b)$ resulting from [\(1\)](#page-4-0):

$$
\text{Im } H(s,b) = \frac{1 \pm \sqrt{1 - (1 + \rho^2) G_{in}(s,b)}}{1 + \rho^2}
$$
 (2)

⇒ We see that *Gin*(*s*, *b*) must fit onto the interval

$$
0\leq G_{\text{in}}(s,b)\leq (1+\rho^2)^{-1}
$$

where we have required Im *H*(*s*, *b*) be real.

■ The construction of unitarized scattering amplitudes relies on two formal steps:

Step 1. The choice of a Born term $F(s, t)$ with the crossing-even and crossing-odd parts defined as

$$
\mathcal{F}^\pm(\bm{s},t)=\frac{1}{2}\left[\mathcal{F}^{\textit{pp}}(\bm{s},t)\pm\mathcal{F}^{\bar{\textit{pp}}}(\bm{s},t)\right]
$$

 \square The correspondent crossing-even and crossing-odd Born amplitudes in *b*-space are given by

$$
\chi^{\pm}(\mathbf{s},b)=\frac{1}{s}\int_0^{\infty}q\,dq\,J_0(bq)\mathcal{F}^{\pm}(\mathbf{s},-q^2)
$$

Step 2. Consists of writing the scattering amplitude *H pp* $_{\bar \rho \rho}^{\rho \rho}(s,b)$ in terms of the Born amplitudes $\chi_{\bar{p} \bar{p}}^{p \bar{p}}$ $_{\bar{p}p}^{\rho\rho}(s,b)$

⇒ Once this is done, $\mathcal{A}_{\bar{p}p}^{\rho\rho}$ $\frac{\rho\rho}{\bar{\rho}\rho}(s,t)$ is finally obtained from the inverse Fourier-Bessel transform of *H pp* $_{\bar{p}p}^{\mu \nu }(\boldsymbol{s},b)$:

$$
\mathcal{A}^{pp}_{\bar{p}p}(s,t)=s\int_0^\infty b\,db\,J_0(bq)\,H^{pp}_{\bar{p}p}(s,b)
$$

Eikonal Unitarization

 \blacksquare The eikonal unitarization corresponds to the solution of equation [\(2\)](#page-5-0) with the minus sign

 \Rightarrow The eikonal scheme (Es) leads us to the relation

$$
H(s,b)=i\left[1-e^{i\chi(s,b)}\right]
$$

so that

$$
\mathcal{A}_{[Es]}(s,t) = \mathit{is} \int_0^\infty \mathit{b} \, d\mathit{b} \, J_0(\mathit{b}q) \left[1 - e^{i \chi(s,b)}\right]
$$

 \square In the Es there is an upper limit on the imaginary part of $H(s, b)$,

$$
0\leq ImH(s,b)\leq (1+\rho^2)^{-1}
$$

Eikonal Unitarization

Solving the Unitarity Eq. [\(1\)](#page-4-0) for $G_{in}(s, b)$ in terms of $\chi(s, b)$ yields

 $G_{in}(s, b) = 1 - e^{-2 \text{Im } \chi(s, b)}$

 \Rightarrow The positivity condition on $G_{in}(s, b)$ and the upper limit on $Im H(s, b)$ restrict the imaginary part of $\chi(s, b)$ over

$$
0\leq \mathsf{Im} \chi(\boldsymbol{s},b) \leq -\frac{1}{2} \ln \left(\frac{\rho^2}{1+\rho^2} \right)
$$

 \Rightarrow In the limit of a perfectly absorbing profile $H(s, b)$ and $\chi(s, b)$ are purely imaginary

 \Rightarrow In this limit we have the asymptotic result $\sigma_{el}/\sigma_{tot} = 1/2$

*U***-matrix Unitarization**

■ The *U*-matrix unitarization corresponds to the solution of the unitarity equation [\(2\)](#page-5-0) with the plus sign

⇒ The *U*-matrix scheme (Us) leads us to the relation

$$
H(s,b)=\frac{\chi(s,b)}{1-i\chi(s,b)/2}
$$

so that

$$
\mathcal{A}_{[US]}(s,t) = \mathit{is} \int_0^\infty b \, db \, J_0(bq) \left[\frac{2\chi(s,b)}{\chi(s,b)+2i} \right]
$$

 \square In the Us the Im $H(s, b)$ is constrained to lie in the interval

$$
(1+\rho^2)^{-1} \leq \text{Im}H(s,b) \leq 2(1+\rho^2)^{-1}
$$

*U***-matrix Unitarization**

 \Rightarrow These results lead us to the asymptotic behavior $\sigma_{el}/\sigma_{tot} = 1$

 \Rightarrow Thus $H(s, b)$ may exceed the black disc limit in this approach

Born Input Amplitudes

■ The input Born amplitudes are associated with Reggeon exchange amplitudes

⇒ The corresponding amplitudes in the *b*-space are given by

$$
\chi_i(\mathbf{s},b)=\frac{1}{s}\int\frac{d^2q}{2\pi}\,e^{i\mathbf{q}\cdot\mathbf{b}}\,\mathcal{F}_i(\mathbf{s},t)
$$

where $i = -, +, \mathbb{P}$, and \mathbb{O} .

⇒ The physical amplitudes in *b*-space are obtained by summing of all possible exchanges:

 $\chi^{pp}_{\bar{p}n}$ $\frac{\partial p}{\partial \rho}(\bm{s}, \bm{b}) = \chi_{\mathbb{P}}(\bm{s}, \bm{b}) + \chi_{+}(\bm{s}, \bm{b}) \pm \chi_{-}(\bm{s}, \bm{b}) \pm \xi_{\mathbb{O}} \chi_{\mathbb{O}}(\bm{s}, \bm{b})$ \Rightarrow Here $\chi_+(s, b)$ ($\chi_-(s, b)$) is the $C = +1$ ($C = -1$) Reggeon contribution

 $\Rightarrow \chi_{\mathbb{P}}(s,b)$ ($\chi_{\mathbb{O}}(s,b)$) is the Pomeron (Odderon) contribution

 $\Rightarrow \xi_0$ is the Odderon phase factor

 $\Box \xi_{\Omega}$ is associated with the positivity property

 \square However, unlike Pomeron, the Odderon is not constrained by positivity requirements

From a theoretical standpoint, this implies that it is not possible to determine the phase of the Odderon mathematically

■ Specifically, the Born amplitude for each single exchange is

$$
\mathcal{F}_i(\boldsymbol{s},t) = \beta_i^2(t)\eta_i(t)\left(\frac{\boldsymbol{s}}{\boldsymbol{s}_0}\right)^{\alpha_i(t)}
$$

 $\Rightarrow \beta_i^2(t)$ is the elastic proton-Reggeon vertex

 $\Rightarrow \alpha_i(t)$ is the Regge trajectory

 $\Rightarrow \eta_i(t) = -i e^{-i\frac{\pi}{2}\alpha_i(t)}$ is the odd-signature factor

 $\Rightarrow \eta_i(t) = -e^{-i\frac{\pi}{2}\alpha_i(t)}$ is the even-signature factor

 \Rightarrow $s_0 \equiv$ 1 GeV² is an energy scale

■ For Reggeons with positive charge-conjugation:

 $\beta_{+}(t) = \beta_{+}(0) \exp(r_{+}t/2)$

and

$$
\alpha_+(t)=1-\eta_++\alpha_+'t
$$

 \square Similarly, the Reggeons with negative charge-conjugation are described by the parameters $\beta_-(0),$ $r_-,\eta_-,$ and α'_-

■ For Pomeron exchange we adopt

$$
\alpha_{\mathbb{P}}(t)=\alpha_{\mathbb{P}}(0)+\alpha_{\mathbb{P}}'t+\frac{m_\pi^2}{32\pi^3}\,h(\tau)
$$

where $\alpha_{\mathbb{P}}(0) = 1 + \epsilon$ and

$$
h(\tau) = -\frac{4}{\tau} F_{\pi}^{2}(t) \left[2\tau - (1+\tau)^{3/2} \ln \left(\frac{\sqrt{1+\tau}+1}{\sqrt{1+\tau}-1} \right) + \ln \left(\frac{m^{2}}{m_{\pi}^{2}} \right) \right]
$$
 (3)

with $\epsilon > 0$, $\tau = 4m_{\pi}^2/|t|$, $m = 1$ GeV, and $m_{\pi} = 139.6$ MeV

 \Rightarrow $F_{\pi}(t)$ is the form factor of the pion-Pomeron vertex:

 $F_{\pi}(t) = \beta_{\pi}/(1-t/a_1)$

 $\Rightarrow \beta_{\pi}$ specifies the value of the pion-Pomeron coupling

 \Rightarrow we take the additive quark model relation $\beta_{\pi}/\beta_{P}(0) = 2/3$

The third term on the right-hand side of (3) corresponds to pion-loop insertions and is generated by *t*-channel unitarity

■ We investigated two different forms for the proton-Pomeron vertex

 \square The first vertex, specifying our "Model I", is given by

$$
\beta_{\mathbb{P}}(t)=\beta_{\mathbb{P}}(0)\exp\left(\frac{r_{\mathbb{P}}t}{2}\right)
$$

 \square The second proton-Pomeron vertex, referred to as "Model II", has the power-like form

$$
\beta_{\mathbb{P}}(t)=\frac{\beta_{\mathbb{P}}(0)}{(1-t/a_1)(1-t/a_{\mathbb{P}})}\qquad \qquad (4)
$$

 \Rightarrow Note that the parameter a_1 in (4) is the same as the one in the expression for $F_{\pi}(t)$

 \Rightarrow we fix this parameter at $a_1 = m_\rho^2 = (0.776\,\text{GeV})^2$

■ The total cross section, the elastic differential cross section, and the ρ parameter are expressed in terms of the physical amplitude $\mathcal{A}_{\bar\rho\bar\rho}^{pp}$ $_{\bar{p}p}^{\rho\rho}$ (s,t) ,

$$
\sigma^{\rho\rho,\bar\rho\rho}_{tot}(s)=\frac{4\pi}{s}\,\text{Im}\, \mathcal{A}^{\rho\rho}_{\bar\rho\rho}(s,t=0)
$$

$$
\frac{d\sigma^{pp,\bar{p}p}}{dt}(\boldsymbol{s},t)=\frac{\pi}{s^2}\left|\mathcal{A}^{pp}_{\bar{p}p}(\boldsymbol{s},t)\right|^2
$$

$$
\rho^{pp,\bar{p}p}(s) = \frac{\text{Re } A^{\rho p}_{\bar{p}p}(s,t=0)}{\text{Im } A^{\rho p}_{\bar{p}p}(s,t=0)}
$$

together with the replacements A *pp* $\frac{\rho\rho}{\bar\rho\rho}(\bm{s},t) = \mathcal{A}_{\texttt{[ES]}}^{\rho\rho,\bar\rho\rho}$ $\frac{\rho\rho,\bar{\rho}\rho}{\left[Es\right]}(\bm{s},t)$ or $\mathcal{A}^{\rho\rho,\bar{\rho}\rho}_{\left[US\right]}$ $\frac{\rho \rho, \rho \rho}{|\mathcal{U}s|}(\boldsymbol{s},t),$ where

$$
\mathcal{A}_{[Es]}^{\rho\rho,\bar{\rho}\rho}(s,t)=is\int_0^\infty b\,db\,J_0(bq)\left[1-e^{i\chi_{\bar{\rho}\rho}^{\rho\rho}(s,b)}\right]
$$

and

$$
\mathcal{A}^{pp,\bar{p}p}_{[Us]}(s,t)=is\int_{0}^{\infty}b\,db\,J_{0}(bq)\left[\frac{2\chi_{\bar{p}p}^{pp}(s,b)}{\chi_{\bar{p}p}^{pp}(s,b)+2i}\right]
$$

■ The Born amplitude for the Odderon contribution is represented as

$$
\mathcal{F}_{\mathbb{O}}(\bm{s},t)=\beta_{\mathbb{O}}^2(t)\,\eta_{\mathbb{O}}(t)\left(\frac{\bm{s}}{\bm{s}_0}\right)^{\alpha_{\mathbb{O}}(t)}
$$

where $\eta_{\mathbb{O}}(t) = -i e^{-i \frac{\pi}{2} \alpha_{\mathbb{O}}(t)}$

 \square In the formulation of "Model III", we employ an exponential form factor for the proton-Odderon vertex:

$$
\beta_{\mathbb{O}}(t) = \beta_{\mathbb{O}}(0) \exp \left(\frac{r_{\mathbb{O}}t}{2} \right)
$$

with $r_{\odot} = r_{\rm P}/2$

 \square In the formulation of "Model IV", we adopt the power-like form for the proton-Odderon vertex:

$$
\beta_{\mathbb{O}}(t) = \frac{\beta_{\mathbb{O}}(0)}{(1 - t/m_{\rho}^2)(1 - t/a_{\mathbb{O}})}
$$

with $a_{\mathbb{O}} = 2a_{\mathbb{P}}$

 \Rightarrow The relationship between a_{Ω} and $a_{\mathbb{P}}$ that must satisfy the constraint $a_0 \ge a_{\mathbb{P}}$ to avoid non-physical amplitudes when using a power-like form factor

E From the standpoint of QCD (at the lowest order) the $C = +1$ amplitude arises from the exchange of two gluons and the $C = -1$ amplitude from the exchange of three gluons

■ Extensive theoretical studies have been directed towards uncovering corrections to these results, particularly in higher orders

 \square In this scenario, the leading-log approximation allows for the summation of certain higher-order contributions to physical observables in high-energy particle scattering processes

 \Rightarrow This approach was widely used in the study of the QCD-Pomeron through the BFKL equation

 \Rightarrow In BFKL equation terms of the order $(\alpha_s \ln(s))^n$ are systematically summed at high energy (large *s*) and small strong coupling α*^s*

 \Rightarrow The simplistic notion of bare two-gluon exchange gives way to the BFKL Pomeron, which, in an alternative representation, can be seen as the interaction of two reggeized gluons with one another

■ Beyond the BFKL Pomeron, the most elementary entity within perturbative QCD is the exchange involving three interacting reggeized gluons

 \square The evolution of the three-gluon Odderon exchange as energy increases is governed by the BKP equation

 \Rightarrow A bound state solution of this Odderon equation was obtained with the intercept $\alpha_{\mathbb{O}}(0) = 1$

■ Based on these QCD findings, we adopt in this work the simplest conceivable form for the Odderon trajectory:

 $\alpha_{\mathbb{O}}(t)=1$

Results

■ The LHC has released exceptionally precise measurements of diffractive processes

 \square These measurements, particularly the total and differential cross sections obtained from ATLAS and TOTEM Collaborations, enable us to determine the Pomeron and Odderon parameters accurately

 \Rightarrow However, these experimental results unveil a noteworthy tension between the TOTEM and ATLAS measurements

 \Rightarrow For instance, when comparing the TOTEM and the ATLAS result for $\frac{p}{\sigma_{tot}}$ at $\sqrt{s} = 8$ TeV, the discrepancy between the values corresponds to 2.6 σ

Results

■ In order to systematically explore the tension between TOTEM and ATLAS results, we perform global fits to *pp* and $\bar{p}p$ forward scattering data and to *pp* differential cross-section data while considering two distinct datasets, one with TOTEM measurements and the other with ATLAS measurements

 \square The two data ensembles can be defined as follows: **Ensemble A**: $\sigma_{tot}^{pp,\bar{p}p}$ data + $\rho^{pp,\bar{p}p}$ data + ATLAS data on $\frac{d\sigma}{dt}$ at 7, 8, and 13 TeV; **Ensemble T**: $\sigma_{tot}^{pp,\bar{p}p}$ data + $\rho^{pp,\bar{p}p}$ data + TOTEM data on $\frac{d\sigma}{dt}$ at 7, 8, and 13 TeV

 \Rightarrow We carry out global fits to the two distinct ensembles using a χ^2 fitting procedure, where $\chi^2_{\sf min}$ follows a χ^2 distribution with ν DoF

 \Rightarrow We adopt an interval $\chi^2-\chi^2_{\sf min}$ corresponding to a 90% confidence level (CL).

Pomeron Analysis

Table: The Pomeron and secondary Reggeons parameters values obtained in global fits to Ensembles A and T after the eikonal unitarization.

Pomeron Analysis

Table: The Pomeron and secondary Reggeons parameters values obtained in global fits to Ensembles A and T after the *U*-matrix unitarization.

Pomeron ⊕ **Odderon Analysis**

Table: The Pomeron, Odderon and secondary Reggeons parameters values obtained in global fits to Ensembles A and T after the eikonal unitarization. We show the results with $\xi_0 = -1$.

Pomeron ⊕ **Odderon Analysis**

Table: The Pomeron, Odderon and secondary Reggeons parameters values obtained in global fits to Ensembles A and T after the *U*-matrix unitarization. We show the results with $\xi_0 = -1$.

Conclusions and Perspectives

■ The presence of the Odderon immediately impacts the behavior of total cross sections, particularly generating different growth patterns for $\sigma_{tot}^{pp}(s)$ and $\sigma_{tot}^{\bar{p}p}(s)$ at high energies

⇒ With an asymptotic non-zero crossing-odd term A−(*s*, *t*) in the scattering amplitude, it is possible to demonstrate that $|\Delta\sigma|$ can be at most $|\Delta \sigma| = k \ln s$ in the limit $s \to \infty$, where *k* is a constant

■ After introducing the Odderon, the eikonal scheme demonstrates a slight advantage over the *U*-matrix scheme, mirroring the scenario where the Pomeron is the sole asymptotically dominant entity

No we observe that for an Odderon with a phase factor $\xi_0 = +1$, all eight $\beta_{\mathbb{O}}(0)$ values obtained are consistent with zero (errors significantly surpassing central values)

Conclusions and Perspectives

 \Rightarrow Consequently, the remaining parameters assume values very closely resembling the scenario where the Pomeron dominates the scattering amplitude

■ The Odderon phase is well-defined and is equal to $\xi_0 = -1$

■ An ongoing analysis focusing solely on high-energy data, considering exclusively the contributions from Pomeron and Odderon, is imperative to ascertain the stability of the Odderon phase factor

■ Ongoing investigations involving a two-channel model are underway, focusing on the study of eikonal and *U*-matrix unitarization schemes within the context of our analysis

THANK YOU

Resummations in QCD

■ Every physical observable can be written, in pQCD, as a power series in α*^s*

 \implies in these series the coupling constant is accompanied by large logarithms, which need to be resummed

 \implies according to the type and to the powers of logarithms that are effectively resummed one gets different evolution equations

The solution of the DGLAP equation sums over all orders in α_s **the** contributions from leading, single, collinear logarithms of the form $\alpha_{\scriptscriptstyle S}$ ln $\left(Q^2/Q_0^2\right)$

 \implies it does not include leading, single, soft singularities of the form α_s ln (1/*x*), which are treated instead by the BFKL equation

■ The BFKL equation describes the *x*-evolution of PDFs at fixed Q^2

Resummations in QCD

■ The phase space regions which contribute these logarithms enhancements are associated with configurations in which successive partons have strongly ordered transverse, k_T , or longitudinal, $k_I \equiv x$, momenta:

 \Rightarrow $\alpha_s L_Q \sim$ 1, $\alpha_s L_X \ll$ 1: $Q^2 \gg k_{\mathcal{T},n}^2 \gg \cdots \gg k_{\mathcal{T},1}^2 \gg Q_0^2$

⇒ α*sL^x* ∼ 1, α*sL^Q* ≪ 1: *x* ≪ *xⁿ* ≪ · · · ≪ *x*¹ ≪ *x*⁰

■ At small-*x* and slow Q^2 (where gluons are dominant) we do not have strongly ordered *k^T*

 \Rightarrow we have to integrate over the full range of k_T

⇒ this leads us to work with the *unintegrated* gluon PDF $\tilde{g}(x, k_T^2)$:

$$
xg(x,Q^2) = \int^{Q^2} \frac{dk_T^2}{k_T^2} \tilde{g}(x,k_T^2)
$$

Positivity

■ The phase factor is associated with the positivity property

 \Rightarrow However, unlike Pomeron, the Odderon is not constrained by positivity requirements

 \Rightarrow From a theoretical standpoint, this implies that it is not possible to determine the phase of the Odderon mathematically

 \square This issue can be succinctly grasped: in the forward direction the physical amplitudes F *pp* $\frac{p\rho}{\bar{p} \rho}(s)$ can be written as $\mathcal{F}^{pp}_{\bar{p} \rho}$ *pp*¯ (*s*) = *F* ⁺(*s*) ± *F* [−](*s*)

 \square Considering that the only relevant contributions are those arising from the Pomeron and the Odderon exchanges, we can write the symmetric and antisymmetric amplitudes as $F^+(s) = R_{\mathbb{P}}(s) + i I_{\mathbb{P}}(s)$ $\mathsf{and}\; \bar{F}^{-}(s) = R_{\mathbb{O}}(s) + i \bar{I}_{\mathbb{O}}(s)$

 \square From the optical theorem, we have $s\sigma_{tot}^{pp,\bar{p}p}(s) = 4\pi$ Im $\mathcal{F}_{\bar{p}p}^{pp}$ $\frac{p}{\bar{p}p}(s) > 0,$ which implies that

$$
\text{Im}\,\mathcal{F}^{pp}_{\bar{p}p}(s)=\mathit{I}_{\mathbb{P}}(s)\pm\mathit{I}_{\mathbb{O}}(s)>0
$$

and, in turn,

 $I_P(s) > |I_{\odot}(s)|$

As a consequence,

$$
\textit{l}_{\mathbb{P}}(s) = \frac{s}{2}\left[\sigma_{\textit{tot}}^{\textit{pp}}(s) + \sigma_{\textit{tot}}^{\textit{pp}}(s)\right] > 0
$$

while

$$
I_{\mathbb{O}}(s) = \frac{s}{2} \left[\sigma_{tot}^{pp}(s) - \sigma_{tot}^{\bar{p}p}(s) \right]
$$

is not bound by the same positivity requirements