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Introduction



The search for the Critical Point

What is it?

• Critical point (CP) – a hypo-
thetical end point of first order
phase transition line (QGP-HM)
that has properties of second or-
der phase transition.

• 2nd order phase transition –
scale invariance power-law form
of correlation function. Predic-
tions on the CP existence, its lo-
cation and what and how should
fluctuate are model-dependent.

Asakawa, Yazaki NPA 504 (1989) 668
Barducci, Casalbuoni, De Curtis, Gatto,
Pettini, PLB 231 (1989) 463

Stephanov, PoS LAT2006 (2006) 024

Who is looking for it?

• Past: NA49 experiment at CERN. proton

intermittency, pion intermittency

• Present
• NA61/SHINE at CERN: proton intermittency, h–

intermittency
• STAR Collaboration at RHIC: h±intermittency
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Intermittency analysis in high energy physics

• The search for the QCD Critical Point
in heavy ion collisions is performed by scan in
the parameter controlled in laboratory (col-
lision energy and nuclear mass number, by
changing them we change freeze-out param-
eters (Tc, µc)

• Intermittency analysis was introduced in to
study fluctuations in particle production by
examining the scaled factorial moments of mo-
mentum distributions. These moments, de-
pendent on the momentum interval size, may
indicate a second-order phase transition.
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Intermittency

Intermittency: random deviations from smooth or regular behaviour.

If we consider a container, a box of size ∆, and we fill it with N balls:

Δ

(Bialas and Peschanski: Nucl. Phys. B 273 (1986),1496 pp. 703–718) 6 / 18



Intermittency

What can happen when we vary the number of cells (M) but the length of the box ∆ and the total
number of balls (N) remain fixed?

Δ

The idea of intermittency is repeating this scenario: Divide the box into smaller cells of the same size
δ, keeping the main size of the box and the number of balls fixed.
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Intermittency: random deviations from smooth or regular behaviour

Δ

δ
N A

N is the total number of balls
∆: is the size of the box
δ is the size of each cell

M = (∆/δ): is the number of cells
ni: number of balls put into ith cell such that∑

i ni = N

The r-order f moment for a given configuration (a
given distribution of the balls) is defined as:

fr(M) =

[
1
M

M∑
i=1

nr
i

]
[

1
M

M∑
i=1

ni

]r = Mr−1N−r
M∑
i=1

nr
i

8 / 18



Intermittency: we can have two cases

Case 1: equidistribution (N/M balls in
each box)

Δ

δ

&

ni = N/M, ∀i

fr(M) = 1, ∀i

Case 2: all balls in one cell (for an
extreme fluctuation from a
thermodynamic point of view

Δ

δ

&

ni = N for i = 2

ni = 0 for i ̸= 2

fr(M) = Mr−1

We say that it is intermittent behaviour if: log(fr(M)) varies linearly with log(δ)
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Scaled factorial moments

• In NA61/SHINE at CERN SPS, intermittency
analysis is performed in 2D transverse
momentum plane.

• At the second order phase transition (critical
point), the system becomes scale invariant.

• This phenomenon leads to enhanced multiplicity
fluctuations with special properties, that can be
revealed by scaled factorial moments:

Fr(M) =

〈
1
M

M∑
i=1

Ni...(Ni − r + 1)

〉
〈

1
M

M∑
i=1

Ni

〉r

M – sub-division intervals
Ni – number of particles in i-th bin

When the system is a simple fractal, Fq(M) follows a power

law dependence: Fq(M) = Fq(∆)(M2)ϕq where the critical
exponent or intermittency indices ϕq obey the relation: ϕq =
(q − 1)dq where the anomalous fractal dimension dq is indepen-
dent of q.

Wosiek, APPB 19 (1988) 863

Satz, NPB 326 (1989) 613 Bialas, Peschanski, NPB 273 (1986) 703
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Current methodologies

Fr(M) depends on the shape of inclusive single particle pT distribution. In order to eliminate this
dependence we have two approaches

pT binning

Instead of studying F2(M) we study
ΔF2. The quantity defined as:1

∆F2(M) = F data
2 (M)− Fmixed

2 (M)

1NA49 collaboration. In: Eur. Phys. J. C
75.2 (2015), p. 587m
2Bialas; Gazdzicki. In: Physics Letters B
252.3 (1990), pp. 483–486
3Antoniou; Diakonos. url:
https://indico.cern.ch/event/818624

Cumulative pT binning

Instead of using px, py we use cumulative quantities Qx, Qy :

Qx =

x∫
xmin

ρ(x)dx/

xmax∫
xmin

ρ(x)dx

Qy =

y∫
ymin

P (x, y)dy/P (x)

• Transforms any distribution into uniform 2 and removes the
dependence of Fr on the shape of single particle distribution.

• Intermittency index of an ideal power law correlation function
remain invariant 3

• Results are displayed in:
• F2(M) for proton intermittency
• ∆Fr(M)c = Fr(M) − Fr(1) for h–

(where Fr(M) and Fr(1) by employing the cumulative
pT binning. Fr(1) = Fr(M) for uncorrelated particles
in pT)
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Results for proton intermittency for Ar+Sc energy scan



Results for proton intermittency for Ar+Sc energy scan
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No indication of power law increase with bin size

H. Adhikary et.al (NA61/SHINE Collaboration), Eur.Phys.J.C 83 (2023) 9, 881

H. Adhiakry (for NA61/SHINE Collaboration), EPJ Web Conf. 274 (2022) 06008
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Power-law Model: What if we actually have a signal?

Developer: Tobiasz Czopowicz (arXiv:2309.13706)

Purpose of model: to test different experimental effects and
quantify negative intermittency results (inspired by the power-law
correlations between particles near the QCD CP)

This model introduces a power-law correlation near the CP, demon-
strating the expected scaling behavior of Fq(M) in M2 and a linear
relationship between intermittency indices.

model is capable of generating particle correlations independent
of the form of transverse momentum or multiplicity distributions.
Additionally, the model can be used to study the impact of detector
effects on scaled factorial moments.

Key feature: Generates momenta of uncorrelated and correlated
particles with a given single-particle pT distribution in events with
a given multiplicity distribution.
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Results for negatively charged hadrons intermittency in
Xe+La collisions at 150A GeV/c



h– intermittency: an unexpected increase
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An unexpected increase was found when analyzing negatively charged hadrons in Xe+La collisions at
150A GeV/c in central collisions. (A similar increase was reported by STAR collaboration in 2023,
but the physics beyond this form was left unexplained)
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Short range correlations

• A strong increase of ΔF2 with M is observed
for results in pT binning.

• EPOS model does not show this increase

• In the case of protons no increase of ΔF2

results, neither in data or EPOS observed.

Is there a physics correlation which is
present for data h–, and absent in protons
and EPOS h–, that can explain this
behaviour?

Yes, short range correlations, of
Bose-Einstein type

So we studied the h–-h– correlation.

ΔpT =
√

(p2,x − p1,x)2 + (p2,y − p1,y)2
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For experimental data we observe the typical expected
behavior indicating the presence of short range correla-
tions. For pure EPOS there are no correlations, and for
EPOS+detector effects there are anti-correlations due
to the limited two track resolution.
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h– intermittency results for Xe+La 150 A GeV/c
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• The removal of this short range correlations might be too dramatic. Cumulative pT transformation,
preserves the scale-invariant power-law correlations and destroys other types non-scale invariant
correlations.

• Statistics of Xe+La at 150A GeV/c allow to explore higher order moments of intermittency.
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Summary

Results on intermittency analysis in NA61/SHINE were discussed

• proton intermittency analysis for central Ar+Sc collisions (13-150A GeV/c )

✓ No signs of power law increase with bin size was found on proton intermittency analysis, nor using
pT of cumulative pT

• negatively charged hadrons intermittency for central Xe+La collisions at 150A GeV/c

✓ the experimental data on ΔF2 for pT binning exhibits an increase, but it does not follow a power
law, the increase can be explained by short range correlations (HBT).

✓ this might be a potential explanation to the increase seen by other collaborations.
✓ no indication of power law increase with bin size observed in cumulative pT distribution. Since

cumulative transformation preserves the scale-invariant power-law correlations, but destroys other
types non-scale invariant correlations.



Thanks



Appendix

21 / 18



History of intermittency analysis in high energy physics

• The concept of intermittency was originally developed in the study of turbulent flow. (Ya.B. Zeldovich
et al., Usp. Fiz. Nauk 152 3)

• Bialas and Pschanski, introduced after that intermittency analysis could be used to study fluctuations in
high energy physics. It was proposed to study the scaled factorial moments of rapidity distribution of
partcls produces in high energy collisions as function of the size of rapidity interval. (Bialas, A. and
Peschanski, R. (1986) Nuclear Physics B, 273, 703-718. )

• After, Wosiek’s work showed indications of intermittent behaviour in the critical region of the 2D Ising
model. This raised the general question of wheter or not intermittency and ciritical behaviour wer
related.

• Satz showed that the critical behavior of the Ising model indeed leads to intermittency, with indices
determined by the critical exponents (Satz: Nucl. Phys. B 326 (1989), pp. 613–618)

• And Bialas and Hwa reported that intermittency parameters could serve as a signal of second-order
phase transition using scaled factorial moments (Bialas and Hwa: Phys.Lett. B253 (1991), pp. 436–438)

• And at this point experiments begin to use this approach...
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Short range correlations

If we remove the region with ΔpT <100 MeV/c, the ΔF2 is independent of M2 for both experimental data and
EPOS.
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This suggests that the increase of ΔF2 of the data was cause by this short range correlations
However, this removal of ΔpT region may also affect possible correlations due to CP.
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Intermittency analysis in high energy physics

• The search for the QCD Critical Point
in heavy ion collisions is performed by scan in
the parameter controlled in laboratory (col-
lision energy and nuclear mass number, by
changing them we change freeze-out param-
eters (Tc, µc)

• Intermittency analysis was introduced in to
study fluctuations in particle production by
examining the scaled factorial moments of mo-
mentum distributions. These moments, de-
pendent on the momentum interval size, may
indicate a second-order phase transition.
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