Feasibility studies of Λ transverse polarization in inelastic proton–proton interactions at beam momentum 158 GeV/c at NA61/SHINE at the CERN SPS

Yehor Bondar

NA61/SHINE Collaboration, CERN

05.09.2024

Yehor Bondar

Λ hyperon particle

Discovered in 1950 $\Lambda = uds$ $J^P = \frac{1}{2}^+$ Mass: m = 1.116 GeV/cLifetime: $\tau = 2.6 \cdot 10^{-10} \text{ s}$, $c\tau = 7.89 \text{ cm}$. Main decay mode: $p\pi^-$ (BR = 63.9%)

In the weak decay $\Lambda \rightarrow p + \pi^-$, the proton tends to be emitted along Λ polarization vector. If θ^* is the angle between daughter proton momentum and Λ polarization vector in hyperon rest frame, then:

$$\frac{dN}{d\Omega} = \frac{1}{4\pi} (1 + \alpha P \cos \theta^*).$$

Λ polarization

Pics: The STAR Collaboration, Yu. Naryshkin.

Motivation

None of the theoretical models (Lund $model^{[1,2]}$, DeGrand-Miettinen $model^{[3,4]}$, etc.) explains all experimental data, including other hyperons/antihyperons.

The comprehensive data collected by the NA61/SHINE experiment during a two-dimensional scan in beam momentum and system size (p+p, p+Pb, Be+Be, Ar+Sc, Xe+La, Pb+Pb) give a potential for systematic studies of dependence of the Λ polarization on these parameters.

[1]B. Andersson, G. Gustafson, G. Ingelman, Phys. Lett. B 85 (1979) 417-420
[2]B. Andersson, G. Gustafson, G. Ingelman, T. Sjöstrand, Phys. Rep. 97 (1983) 31-145
[3]T. A. DeGrand, H. I. Miettinen, Phys. Rev. D 24 (1981) 2419-2427
[4]T. A. DeGrand, H. I. Miettinen, Phys. Rev. D 23 (1981) 1227-1230

NA61/SHINE Experimental setup in 2009-2011

Transverse polarization definition and calculation

Transverse polarization definition:

i. Rotate from Lab frame to production plane coordinate system:

$$\hat{n}_x = \frac{\vec{p}_{\rm beam} \times \vec{p}_{\Lambda}}{|\vec{p}_{\rm beam} \times \vec{p}_{\Lambda}|}, \ \hat{n}_z = \frac{\vec{p}_{\Lambda}}{|\vec{p}_{\Lambda}|}, \ \hat{n}_y = \hat{n}_z \times \hat{n}_x$$

ii. Boost along \hat{n}_z to Λ rest frame. iii. Calculate cosine of angles between proton momentum $\vec{p_p}$ and axes: $\cos \theta_i = p_{p\,i}/|\vec{p_p}|, i = x, y, z$ iv. Fit distribution of the $\cos \theta_i$ to the theoretical prediction and extract P_i – projection of polarization.

$$f(\cos \theta_i) = \frac{1 + \alpha P_i \cos \theta_i}{2},$$

where $\alpha = 0.732 \pm 0.014$ [PDG].

According to parity conservation in the strong interaction, $P_y \equiv P_z \equiv 0$ if the incident proton beam is unpolarized. Thus, the measurements of P_y and P_z are usually used to check the systematic uncertainties.

$x_F - p_T$ distribution

 Λ candidates in EPOS MC after data selection cuts

The Λ transverse polarization measured by ATLAS and others. For $p_{\text{beam}} = 158 \text{ GeV/c}, \sqrt{s} = 17 \text{GeV}.$

Expected signal: $P \approx 0.1$ at $x_F \approx 0.25$; zero for $p_T \approx 0$ and saturates at $p_T \approx 1$ GeV/c.

Feynman variable x_F defined as $x_F = (p_z)^{\text{CMS}} / (p_{\text{beam}})^{\text{CMS}}$. Fig. 2: 10.1103/PhysRevD.91.032004

Yehor Bondar

Magnetic field impact on Λ polarization

- Λ hyperon has a magnetic moment $\mu_{\Lambda} = -0.613 \mu_N$
- Its interaction (*precession*) with the magnetic field inside TPCs ($B \approx 1.5$ T) may bias the measurements
- We showed that magnetic field impact on Λ polarization due to precession is smaller than detector acceptance-based polarization bias

Using Bargmann–Michel–Telegdi (BMT) equation

$$\frac{dS^{\alpha}}{d\tau} = \frac{ge}{2m} \left[F^{\alpha\beta} S_{\beta} + u^{\alpha} \left(S_{\lambda} F^{\lambda\mu} u_{\mu} \right) \right] - u^{\alpha} \left(S_{\lambda} \frac{du^{\lambda}}{d\tau} \right)$$

Or, simplified and in the Λ rest frame:

$$\frac{d\vec{S}}{d\tau} = \mu_{\Lambda}\mu_{N} \left[\vec{S} \times \vec{B'}\right]$$

Λ precession in magnetic field

The equation of motion of the spin vector \vec{S} in Λ rest frame is

$$\frac{d\vec{S}}{d\tau} = \frac{\mu_{\Lambda}\mu_{N}}{\hbar} \left[\vec{S} \times \vec{B}\right]$$

Considering $dz = \frac{p_z}{mc} c d\tau$, **integrate eq.** using NA61/SHINE magnetic field \vec{B} ^[7]. Initial condition: generate random spin vectors \vec{S} uniformly distributed on unit sphere. Among these vectors, choose one with maximum angle change, $\phi_{\text{max}} = \max(\angle(\vec{S}_{\text{init}}, \vec{S}_{\text{final}})).$

To estimate magnetic field impact on Λ polarization bias, for every $\Lambda,$

- Assign polarization vector \vec{S} uniformly distributed value,
- Propagate it in magnetic field until decay,
- Project \vec{S} on \hat{n}_x , \hat{n}_y , \hat{n}_z and fit their distributions.

Magnetic field impact: Λ polarization bias

Polarization vector P_i distribution for different (x_F, p_T) binning.

Analysis procedure

- Build $m_{\rm inv}$ distributions based on selected $p\pi^-$ pairs, fit them, and extract number of Λ in particular bin.
- Determination of $\cos \theta_{x,y}$ distributions.
- Evaluation of corrections to the distributions based on experimental data and simulations.
- Calculation of the corrected $\cos \theta_{x,y}$ distributions.
- Calculation of statistical and systematic uncertainties.

Reconstructed MC and data selection cuts

Event (collision) selection cuts

- Main vertex exists
- Vertex fit is perfect
- Main vertex fitted within the 20 cm H_2 target ± 10 cm -VtxZ \in (-600; -560) cm.
- Event is inelastic (S4 scintillator cut)

Tracks selection cuts

- One track is negatively charged, second positive
- Min 10 clusters in at least one of VTPC1 and VTPC2 for both tracks
- Energy loss cut: dE/dx within 3σ around Bethe-Bloch
- MC analogy: reconstructed proton and pion matches to sim tracks

Λ candidate selection cuts

- To reduce background, z difference between Λ vertex and primary vertex $\Delta z = z_{\Lambda} - z_{PV} > 10$ cm
- V^0 momentum 'points' at the target: impact parameter at z fulfil $(0.5 \cdot b_x)^2 + (b_y)^2 < 1 \text{ cm}^2$
- $|\cos \theta_z| < 0.9$

$m_{\rm inv}$ distributions fitting procedure

 $x_{F} \in (-0.05,0), p_{T} \in (0.2,0.4) \text{ GeV/c}, \cos \theta_{x} \in (0.0,0.1)$

Red line - asym. Breit-Wigner, blue - asym. q-Gaussian, dashed lines - background fit

Signal as asymmetric q-Gaussian (Breit-Wigner if q = 2):

$$S(m) = N \left[1 + (q-1) \frac{(m-m_{\Lambda})^2}{0.25\Gamma^2} \right]^{-\frac{1}{q-1}}$$

Background part is fitted with 2nd order polynomial.

MC correction on MC data (closure test)

Divide into bins $(x_F, p_T, \cos \theta_j)$, $\cos \theta_j$: 20 bins in [-1, 1]. **Unfolding methods**: **2.** Response matrix inversion. **3.** Bayesian Unfolding: (init guess is uniform, then update using Bayes' theorem).

Used MC models are EPOS and FTFP (we expect $P_x \equiv P_y \equiv 0$).

 Λ candidates in EPOS MC after data selection cuts

Response Matrix: FTFP

Sim-Rec migration $x_{F} \in (-0.05,0)$, $p_{T} \in (0.2,0.4)$ GeV/c

EPOS data unfolded by inversion using FTFP model

Summary

- NA61/SHINE has a large potential to study Λ transverse polarization in p–p and p–A collisions.
- Magnetic field impact on Λ polarization due to precession is zero within stat. uncertainty.
- EPOS-FTFP correction: introduced bias up to several % that may be treated as systematic uncertainty.
- Data (31 mln of inelastic p-p events) is currently under analysis.

Thank you!

This work supported by the Polish National Science Centre Grant No. 2023/49/N/ST2/02299.