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A hyperon particle

Discovered in 1950 @ @
A = uds

JE=1°

Mass: m = 1.116 GeV/c »

Lifetime: 7 = 2.6 - 10710 g,
ct = 7.89 cm. -

Main decay mode: pr~ (BR = 63.9%) 0* £ ..

In the weak decay A — p + 7, the proton tends to be
emitted along A polarization vector. If 8* is the angle
between daughter proton momentum and A polarization
vector in hyperon rest frame, then:

dN 1

diﬂ = E(l—FOZPCOSH )
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A polarization

Transverse polarization

(since 1975)

Pics: The STAR Collaboration, Yu. Naryshkin.
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(found in 2017 by STAR)
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Motivation

None of the theoretical models (Lund model™?, DeGrand-Miettinen model®¥, etc.)
explains all experimental data, including other hyperons/antihyperons.

The comprehensive data collected by the NA61/SHINE experiment during a
two-dimensional scan in beam momentum and system size (p+p, p+Pb, Be+Be, Ar+Sc,
Xe+La, Pb+PDb) give a potential for systematic studies of dependence of the A
polarization on these parameters.
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NA61/SHINE Experimental setup in 2009-2011
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Transverse polarization definition and calculation

Transverse polarization definition:
i. Rotate from Lab frame to production
plane coordinate system:

N Dbeam X PA . ﬁ/\

g = — 7, Ry =My X Ty
‘pbeam X pA| ‘p/\‘

ii. Boost along 7, to A rest frame.

iii. Calculate cosine of angles between proton
momentum p, and axes:

cosb; = ppi/|Dpl, i = x,y, 2

iv. Fit distribution of the cos; to the
theoretical prediction and extract P; —
projection of polarization.

1+ aP,; cos 6;

f(cosb;) = 5 ,

where a = 0.732 £ 0.014 [PDG].

ﬁbeam

—

Ny

According to parity conservation in the
strong interaction, P, = P, = 0 if the
incident proton beam is unpolarized.
Thus, the measurements of P, and P, are
usually used to check the systematic
uncertainties.
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xp-pr distribution
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The A transverse polarization measured by ATLAS
and others. For ppeam = 158 GeV/c, /s = 17GeV.

Expected signal: P ~ 0.1 at zp ~ 0.25; zero for pr ~ 0 and saturates at pr ~ 1 GeV/ec.

Feynman Varlable zp defined as zp = (pz)CMS / (pbeam)CMS. Fig. 2:
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Magnetic field impact on A polarization

e A hyperon has a magnetic moment pup = —0.613uy

e Its interaction (precession) with the magnetic field inside TPCs (B = 1.5T) may bias the
measurements

e We showed that magnetic field impact on A polarization due to precession is smaller than
detector acceptance-based polarization bias

Using Bargmann—Michel-Telegdi (BMT) equation

£ [ ()] (5]

Or, simplified and in the A rest frame:
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A precession in magnetic field

The equation of motion of the spin

vector S in A rest frame is 50'35;
— 9_ |
ds — _ 0.3 v
dS _ papn [5 o B} g 10
dr h 0.25
E arget 103
Considering dz = 22 cdr, integrate eq. 0.2p% #roet ML
using NA61/SHINE magnetic field B 7). 0.15F 102
Initial condition: generate random spin 0.1~
vectors S uniformly distributed on unit F 10
0.05
sphere. Among these vectors, choose one B ?
with maximum angle change, 02500 =400 =300 =200 =100 O 1
Pmax = max(Z(Sinit; Sfinal))- ®maz dependence on zdecg}qecay [cm]

To estimate magnetic field impact on A polarization bias, for every A,
e Assign polarization vector S uniformly distributed value,
e Propagate it in magnetic field until decay,

e Project S on iz, Ny, N, and fit their distributions.
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Magnetic field impact: A polarization bias
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Polarization vector P; distribution for different (zp,pr) binning.
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https://arxiv.org/abs/2408.11050

Analysis procedure

e Build my,, distributions based on selected pm~ pairs, fit them, and
extract number of A in particular bin.

e Determination of cosd,, distributions.

e Evaluation of corrections to the distributions based on experimental
data and simulations.

e Calculation of the corrected cos 8, , distributions.

e Calculation of statistical and systematic uncertainties.




Reconstructed MC and data selection cuts

Tracks selection cuts

e One track is negatively charged, second - positive

e Min 10 clusters in at least one of VIPC1 and VIPC2 for
both tracks

e Energy loss cut: dE/dx within 30 around Bethe-Bloch

e MC analogy: reconstructed proton and pion matches to sim
tracks

Event (collision) selection

cuts

e Main vertex exists

e Vertex fit is perfect

e Main vertex fitted
within the 20 cm Ho
target +10 cm -
VitxZ €
(—600; —560) cm.

e Event is inelastic (S4
scintillator cut)

A candidate selection cuts

e To reduce background, z difference between A vertex and
primary vertex Az = zy — zpy > 10 cm

e V9 momentum ’points’ at the target: impact parameter at z
fulfil (0.5 b,)? + (by)? < 1 cm?
e [cosf,| < 0.9

For details, see Eur. Phys. J. C (2016) 76: 198.
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Miny distributions fitting procedure

x¢[1-0.05,0), pTE(0.2,0.4) GeVic, cos6,[10.0,0.1)
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Red line - asym. Breit-Wigner, blue - asym. g-Gaussian,
dashed lines - background fit
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MC correction on MC data (closure test)

Divide into bins (zf, pr, cos6;),
cosf;: 20 bins in [—1, 1].

Unfolding methods:

2. Response matrix inversion.

3. Bayesian Unfolding: (init guess is
uniform, then update using Bayes’
theorem).

Used MC models are EPOS and FTFP (we
expect P, = P, =0).
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A candidates in EPOS MC after data selection cuts




Response Matrix: FTFP
Sim-Rec migration xFII(-O.OS,O), pTE(O.2,0.4) GeV/c
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EPOS data unfolded by inversion using FTFP model
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Summary

NAG61/SHINE has a large potential to study A transverse polarization in p—p and
p—A collisions.

Magnetic field impact on A polarization due to precession is zero within stat.
uncertainty.

EPOS-FTFP correction: introduced bias up to several % that may be treated as
systematic uncertainty.

Data (31 mln of inelastic p—p events) is currently under analysis.

Thank you!
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