Speed of sound from ultracentral nucleus-nucleus collisions using the mean transverse momentum

Phys. Lett. B 856 (2024) 138937

André V. Giannini

Grande Dourados Federal University – UFGD Santa Catarina State University – UDESC

AndreGiannini@ufgd.edu.br

In collaboration with: F. Gardim, J-Y. Ollitrault

> New Trends in High-Energy and Low-x Physics

Ultra-relativistic heavy-ion collisions

Observed particles Final state observables Nucleus-nucleus collisions @ modern colliders: extract properties from the produced system

Currently best understood via multi-stage hybrid hydrodynamic simulations

Final state dynamics [transport equations – UrQMD, SMASH]

"Particlization" [out-of-equilibrium corrections]

Hydrodynamical evolution $[\partial_{\mu}T^{\mu\nu} = 0 + \text{transport coefficients} + EOS]$

Pre-equilibrium phase [free-streaming, effective kinetic theory] Initial conditions [MC-Glauber, MC-KLN, IP-Glasma, TRENTo, ...]

Ultra-relativistic heavy-ion collisions

Observed particles Final state observables Information needed for such simulations currently determined via Bayesian analysis

Focus on the hydrodynamic phase and the sound velocity of the QGP

Final state dynamics [transport equations – UrQMD, SMASH]

"Particlization" [out-of-equilibrium corrections]

Hydrodynamical evolution $[\partial_{\mu}T^{\mu\nu} = 0 + \text{transport coefficients} + EOS]$

Pre-equilibrium phase [free-streaming, effective kinetic theory]

Initial conditions [MC-Glauber, MC-KLN, IP-Glasma, TRENTo, ...]

Ultra-relativistic heavy-ion collisions

Will make use of "ultracentral" collisions

Nearly vanishing impact parameter Events with highest multiplicities

On average: fixed collision geometry, but multiplicity can vary up to ~15% along with $\langle p_T \rangle$

Excellent laboratory to study changes in system density at fixed geometry

speed of sound in the fluid: change in temperature due to system density

$$c_s^2 = \frac{dP}{d\varepsilon} = \frac{s}{T}\frac{dT}{ds} = \frac{d\ln T}{d\ln s}$$

[Vanishing net-baryon density]

 $\varepsilon = -P + Ts + \mu n$ $dP = sdT + nd\mu$

Temperature: space-time dependent, decreasing with time

Relation involving $\langle p_T \rangle$ of produced particles and an effective temperature has been identified recently:

Gardim, Giacalone, Luzum, Ollitrault, Nature Phys. 16, no.6, 615 (2020)

$$E = \int_{\text{frzout}} T^{0\mu} d\sigma_{\mu} = \epsilon(T_{\text{eff}}) V_{\text{eff}} \qquad S = \int_{\text{frzout}} s u^{\mu} d\sigma_{\mu} = s(T_{\text{eff}}) V_{\text{eff}}$$

$$\downarrow \quad \text{Total energy, including kinetic motion}$$

The total E and S of the medium at freeze-out is put into a uniform, static fluid with effective temperature T_{eff} and effective volume V_{eff} ε , s, T_{eff} : related by EOS

 $T_{\mbox{\scriptsize eff}}$: initial QGP temperature if total energy is conserved all the way to the freeze-out and measured

Temperature: space-time dependent, decreasing with time

Relation involving $\langle p_T \rangle$ of produced particles and an effective temperature has been identified recently:

Gardim, Giacalone, Luzum, Ollitrault, Nature Phys. 16, no.6, 615 (2020)

$$\langle p_T \rangle = 3 T_{\text{eff}}$$

Shown to be independent of the transport coefficients and collision centrality

Gardim, Giacalone, Luzum, Ollitrault, Nature Phys. 16, no.6, 615 (2020)

Equality with lower limit only if system is at rest, which is never achieved due to transverse flow

Relation to measurable quantities

 $\langle p_T \rangle = 3 T_{\text{eff}}$

 $T_{\rm freeze-out} < T_{\rm eff} < T_{\rm initial}$

Entropy is well correlated to the number of produced particles, ${
m S} \propto N_{
m ch}$

For the most part, the above relation for c has been tested at initial condition level Gardim, Giacalone, Ollitrault, PLB 809 (2020) 135749

Recent CMS measurement

 $\langle p_T \rangle = 3 T_{\text{eff}}$

 $T_{\rm freeze-out} < T_{\rm eff} < T_{\rm initial}$

"(...) ultracentral $\langle p_T \rangle$ may not be a direct measurement of the speed of sound" Nijs, van der Schee, PLB 853 (2024) 138636

Goal: assess more precisely the validity of the above relations by means of systematic hydrodynamic calculations

Setup of our simulations: initial conditions

Consider a **smooth** initial condition for fixed impact parameter, b = 0 fm

Assess multiplicity variations by rescaling the initial condition

initial state fluctuations, energy variation

Setup of our simulations: recovering the "smoothness"

40 30 20 10 b = 0 fm avg. over 1000 TRENTo ics

50

$\mathsf{IC} \to \mathsf{Free-streaming} \to \mathsf{Hydrodynamics} \to \textbf{Particlization} \to \mathsf{Final-state} \ \mathsf{dynamics}$

Conversion from fluid to particles destroys the smoothness imposed at the initial state

Reduce discretization effects by sampling and running transport calculations (UrQMD) 1000 times for each hydro event

Setup of our simulations: EOS

Duke's simulation chain (2020)

Moreland, Bernhard, Bass, PRC 101, no.2, 024911(2020)

EOS from HotQCD, matching a HRG at low temperatures, $T_{\rm frzout} \equiv T_F = 151 \,{\rm MeV}$

A. Bazavov et al. [HotQCD], PRD 90, 094503 (2014)

Small fluctuations around Lattice EOS

 $T_{\rm eff}$ averaged over the whole system (misses sharp EOS variations)

$$P(T) \to P(T) + \alpha (T - T_F)^4, \quad T \ge T_F$$

$$15 \qquad \alpha = +1.54, \ 0, \ -1.54 \qquad s = \frac{dP}{dT}$$

$$5 \qquad 0.175 \quad 0.200 \quad 0.225 \quad 0.250 \quad 0.275 \qquad T[GeV]$$

Test whether it is possible to capture small changes in c_s^2 through experimental data

Results

25 values of charged particle multiplicities: 5 sets of 5 values

Simulate multiplicity fluctuations at fixed energy

Will be used to infer c_s^2 by a linear fit

From produced particles:
$$\langle p_T \rangle ~ \& ~ dN_{ch}/d\eta$$
 [after UrQMD]

T_{eff} from EOS @ hydro phase

$$\frac{E}{S} = \left(\frac{\epsilon(T_{\text{eff}})}{s(T_{\text{eff}})}\right)$$

A.V.Giannini

Results

 $\langle p_T
angle$ and $dN_{ch}/d\eta$ increase with collision energy

Softer EOS (Harder EOS) \rightarrow smaller (larger) $\langle p_T \rangle$

 $\langle p_T
angle pprox 3T_{
m eff} \;$ to a good approximation for all cases!

Very mild increase with collision energy

$$\langle p_T \rangle / T_{\rm eff} = 2.93 \pm 0.05$$
 @ 200 GeV

Agrees with previous studies

Gardim, Giacalone, Luzum, Ollitrault, Nature Phys. 16, no.6, 615 (2020) Gardim, Krupczak, Nunes da Silva, PRC 109, no.1, 014904 (2024)

V_{eff} shows some dependence on the EOS, significant uncertainty

Results 2: speed of sound

 $c_s^2(T_{\rm eff}) = \frac{d \ln \langle p_T \rangle}{d \ln N_{\rm ch}}$ $\ln \langle p_T \rangle = const + c_s^2(T_{\rm eff}) \ln N_{\rm ch}$ $T_{\rm eff} \propto \langle p_T \rangle$

For each set of 5 points: fit the resulting $\langle p_T \rangle$ and extract c_s^2

 c_s^2 overestimated by \sim 0.01 for RHIC's top energy; likely due to sharp EOS variation not built in $T_{\rm eff}$

vertical \rightarrow jackknife Horizontal \rightarrow ± 0.05 from $\langle p_T \rangle / T_{eff}$

Results 2: speed of sound

vertical \rightarrow jackknife Horizontal \rightarrow ± 0.05 from $\langle p_T \rangle / T_{\rm eff}$

Discussion 1: kinematic cuts, p_T & η

$$c_s^2(T_{\rm eff}) = \frac{d\ln\langle p_T \rangle}{d\ln N_{\rm ch}}$$

Requires $\langle p_T \rangle$ without any cut

Feasible by extrapolating the measured spectra, as done by CMS

Narrower η interval miss particles with low p_T , thus $\langle p_T \rangle$ increases

Smaller c_s^2 but effect is smaller than error bar reported by CMS!

Result is still robust!!

Discussion 2: centrality determination and self-correlations

CMS: different detector for centrality and ($N_{
m ch},~\langle p_T
angle$) determination, eliminating self-correlations

Analysis still feasible if centrality detector and the analysis detector overlap: assuming everything was done with the detector that measured $N_{\rm ch}$

$$c_s^2(T_{\rm eff}) = \left(1 - \frac{\langle N_{\rm ch} \rangle}{\sigma_{N_{\rm ch}}^2}\right)^{-1/2} \frac{d \ln \langle p_T \rangle}{d \ln N_{\rm ch}}$$

Discussion 3: local energy density fluctuations

 $\mathrm{V}_{\mathrm{eff}}\,$ is tricky! Depends on how one models initial density fluctuations!

Following previous study: assumed conservative assumption that the increase of the multiplicity in ultracentral collisions results from an homogeneous increase of the density

In out setup: increase in energy is equivalent to increase in multiplicity

Not true anymore in presence of fluctuations! Experiment can shed light on this!

Increase of $\langle p_T \rangle$ measured by CMS matches the one from increasing collision energy Gardim, Giacalone, Luzum, Ollitrault, Nature Phys. 16, no.6, 615 (2020) (2.76 TeV \rightarrow 5.02 TeV)

Final remarks

 c_s^2 from data: robust and perhaps surprisingly precise within a hydrodynamic description

Important to assess uncertainties from the non-hydrodynamic production at high transverse momentum

Backup slides

Setup of our simulations: EOS and $\,\alpha$

Moreland, Bernhard, Bass, PRC 101, no.2, 024911(2020)

EOS from HotQCD, matching a HRG at low temperatures, $T_{\rm frzout} \equiv T_F = 151 {\rm MeV}$

A. Bazavov et al. [HotQCD], PRD 90, 094503 (2014)

Weakly coupled regime, $T \to \infty$ $P/T^4 \propto {\rm degrees of freedom}$ Nijs, van der Schee, arXiv:2312.04623

 $\alpha\,$ reflect a change in degrees of freedom

$$P(T) \to P(T) + \alpha (T - T_F)^4, \quad T \ge T_F$$

$$15 \qquad \alpha = -1.54, \ 0, \ +1.54$$

$$s = \frac{dP}{dT}$$

$$0.175 \qquad 0.200 \qquad 0.225 \qquad 0.250 \qquad 0.275$$

Test whether it is possible to capture small changes in c_s^2 through experimental data

Results 1: $\langle p_T angle$ & $dN_{ch}/d\eta$ from produced particles

LF I

A.V. Giannini

Results 2: $T_{\rm eff}$

 $\langle p_T \rangle / T_{\text{eff}} = 2,93 \pm 0.05$ @ 200 GeV

Agrees with previous studies

Gardim, Giacalone, Luzum, Ollitrault, Nature Phys. 16, no.6, 615 (2020) Gardim, Krupczak, Nunes da Silva, PRC 109, no.1, 014904 (2024)

 $T_{\rm eff}$ $|V_{\rm eff}|$: temperature [volume] of of a fluid at rest that would have the same energy and entropy as at the end of the hydrodynamic evolution

 $V_{\rm eff}$ shows some dependence with EOS

Soft EOS: larger system size, smaller $\langle p_T
angle$

Hard EOS: smaller system size, larger $\langle p_T
angle$

Mild increase with charged particle multiplicity for all cases

For $\alpha = 1.54$, Increase of ~11% from $0.2 \leq \sqrt{s_{NN}} \ \leq 15 \ {\rm TeV}$

Extrapolation of particle multiplicities

1. For fixed collision energy: extrapolate linearly, using the first two centrality bins, down to "0% centrality" (b \sim 0 fm)

2. Take into account the different η intervals and rescale by same factor as in our hydrodynamical calculation (increase < 5%, in practice)

3. Extrapolate 0.2 TeV value for Au+Au to Pb+Pb assuming $dN_{\rm ch}/d\eta$ is proportional to mass number: 208 / 197

4. Values for energies larger than LHC regime, $dN/d\eta \propto s_{NN}^{0.155}$

|η| < 1 for 0.2 TeV |η| < 0.5 for 2.76 TeV & 5.02 TeV |η| < 1.5, for our calculation

Initial conditions and initial state fluctuations

