

Studies of the mass composition of cosmic rays and proton-proton interaction cross-sections at ultra-high energies with the **Pierre Auger Observatory**

K. Almeida Cheminant on behalf of the Pierre Auger Collaboration

New Trends in High-Energy and Low-X Physics 2024

Sfântu Gheorghe, Romania

★ Water-Cherenkov Surface Detectors

(SD): signal of secondary particles at the ground.

NTHELP 2024

2

★ Water-Cherenkov Surface Detectors

(SD): signal of secondary particles at the ground.

★ Fluorescence Detectors (FD): longitudinal development of EAS.

2

★ Water-Cherenkov Surface Detectors

(SD): signal of secondary particles at the ground.

★ Fluorescence Detectors (FD): longitudinal development of EAS.

★ Underground Muon Detectors: muon signal.

2

★ Water-Cherenkov Surface Detectors

(SD): signal of secondary particles at the ground.

★ Fluorescence Detectors (FD): longitudinal development of EAS.

- ★ Underground Muon Detectors: muon signal.
- ★ And many others: radio antenna, LIDARs, etc...

Primary of energy E_0 and mass A

> Electromagnetic component formed by the decay of π^0 .

K. Almeida Cheminant

NTHELP 2024

Primary of energy **E**₀ and mass **A**

PIERRE AUGEF

- > Electromagnetic component formed by the decay of π^0 .
- Detection of isotropic fluorescence light.

Primary of energy **E**₀ and mass **A**

AUGEF

- > Electromagnetic component formed by the decay of π^{0} .
- Detection of isotropic fluorescence light.
- <u>Nearly-calorimetric</u> measurement of energy.

Primary of energy **E**₀ and mass **A**

- > Electromagnetic component formed by the decay of π^0 .
- Detection of isotropic fluorescence light.
- <u>Nearly-calorimetric</u> measurement of energy.
- Measurement of the depth of maximum development X_{max}.

(dependent of the **inelastic cross-section** → deeper shower for lower primary mass).

UGEI

- Composition getting lighter up to a few EeV.
- > Above a few EeV, towards mixed and heavier composition.
- > Trends supported by X_{max} fluctuations measurements.

NTHELP 2024

PIERRE AUGER

Large fluctuations prevent primary identification on an event-by-event basis.

NTHELP 2024

 Large fluctuations prevent primary identification on an event-by-event basis. Fit the X_{max} distribution for different energy bins by considering MC simulations of different primaries.

NTHELP 2024

Nik hef

X_{max} measurements & **F**ractions

- Air showers simulated with
 CONEX (1D) and 2 different
 high-energy hadronic models.
- > Mix of primaries: H, He, N and Fe.
- From 10^{17.8} eV to above 10^{19.6} eV.
- > **10**⁴ showers / primary / energy bin.
- Systematics driven by the X_{max} scale uncertainties.

K. Almeida Cheminant

NTHELP 2024

X_{max} measurements & **F**ractions

- Air showers simulated with
 CONEX (1D) and 2 different
 high-energy hadronic models.
- > Mix of primaries: H, He, N and Fe.
- From 10^{17.8} eV to above 10^{19.6} eV.
- > **10**⁴ showers / primary / energy bin.
- Systematics driven by the X_{max} scale uncertainties.

Mix of H, He and N, with He and N dominating at the highest energies.

Fraction of **Fe** consistent with **zero**.

K. Almeida Cheminant

NTHELP 2024

Radboud Universiteit 🧳

Niklhef

7

 Depth of first interaction X₁ related to proton-air cross-section.
 not directly accessible!

K. Almeida Cheminant

NTHELP 2024

Radboud Universiteit 💮 Nik hef

- Depth of first interaction X₁ related to proton-air cross-section.
 not directly accessible!
- 1. Find an **air-shower observable** that is sensitive to the proton-air cross-section.

7

Niklhef

- Depth of first interaction X₁ related to proton-air cross-section.
 not directly accessible!
- 1. Find an **air-shower observable** that is sensitive to the proton-air cross-section.
- 2. **Convert this observable to a proton-air cross-section** measurement using MC simulations.

Niklhef

- Depth of first interaction X₁ related to proton-air cross-section.
 not directly accessible!
- 1. Find an **air-shower observable** that is sensitive to the proton-air cross-section.
- 2. **Convert this observable to a proton-air cross-section** measurement using MC simulations.
- Use Glauber formalism to infer on the proton-proton cross-section.

Nik

1. Observable: X_{max} distribution tail

Fitting the X_{max} interval containing the 20% of the deepest showers (proton-dominated region)

 $\mathrm{d}N/\mathrm{d}X_{\mathrm{max}} \propto \exp(-X_{\mathrm{max}}/\Lambda_{\eta})$

→ measurement of Λ_{η} , sensitive to the proton-air cross-section.

PIERRE

1. Observable: X_{max} distribution tail

Fitting the X_{max} interval containing the 20% of the deepest showers (proton-dominated region)

AUGEF

 $\mathrm{d}N/\mathrm{d}X_{\mathrm{max}} \propto \exp(-X_{\mathrm{max}}/\Lambda_{\eta})$

 \rightarrow measurement of Λ_{η} , sensitive to the proton-air cross-section.

 Systematics uncertainties driven by 25% helium contamination.

Niklhef

2. Proton-air cross-section

- PIERRE AUGER OBSERVATORY
- UHECR measurements at energies greater than what is achievable at the LHC.
 LHC-tuned hadronic models relying on extrapolations to extend predictions to the UHE domain.

Niklhef

2. Proton-air cross-section

- UHECR measurements at energies greater than what is achievable at the LHC.
 LHC-tuned hadronic models relying on extrapolations to extend predictions to the UHE domain.
- > The model-dependent mapping from Λ_{η} to σ_{p-air} has an energy-dependent rescaling factor to account for the extrapolations uncertainties:

$$f(E) = 1 + H(E - E_0)(f_{19} - 1) \frac{\lg(E/E_0)}{\lg(10^{19}/E_0)}$$

(based on PRD 83:054026, 2011)

- ★ E_0 the energy up to which hadronic models are tuned to LHC data (~ 10¹⁷ eV) → no rescaling below this energy.
- f_{19} rescaling at 10¹⁹ eV (model-dependent) that best reproduces Λ_n .

2. Proton-air cross-section

- UHECR measurements at energies greater than what is achievable at the LHC.
 LHC-tuned hadronic models relying on extrapolations to extend predictions to the UHE domain.
- > The model-dependent mapping from Λ_{η} to σ_{p-air} has an energy-dependent rescaling factor to account for the extrapolations uncertainties:

$$f(E) = 1 + H(E - E_0)(f_{19} - 1) \frac{\lg(E/E_0)}{\lg(10^{19}/E_0)}$$

(based on PRD 83:054026, 2011)

- ★ E_0 the energy up to which hadronic models are tuned to LHC data (~ 10¹⁷ eV) → no rescaling below this energy.
- f_{19} rescaling at 10¹⁹ eV (model-dependent) that best reproduces Λ_n .
- > The hadronic cross-sections are rescaled by f(E) in the MC simulations.

Nik

2. Proton-air cross-section

> Systematics driven by helium contamination in the tail, hadronic models uncertainties and Λ_n systematics.

2. Proton-air cross-section

K. Almeida Cheminant

NTHELP 2024

PIERRE AUGER

- 3. Proton-proton cross-section
- Study recently **updated by Olena Tkachenko** to include up-to-date hadronic \succ models and additional energy bins.

PIERRE AUGER

Radboud Universiteit

K. Almeida Cheminant

> We investigate the impact of a **modified** σ_{pp} on the Auger mass composition.

$$\sigma_{\mathrm{mod}}^{\mathrm{pp}} = \sigma_{\mathrm{orig}}^{\mathrm{pp}} f(E)$$

PIERRE AUGER OBSERVATORY

Nik hef

Radboud Universiteit

12

> We investigate the impact of a **modified** σ_{pp} on the Auger mass composition.

$$\sigma_{\mathrm{mod}}^{\mathrm{pp}} = \sigma_{\mathrm{orig}}^{\mathrm{pp}} f(E)$$

We follow the following scheme:

K. Almeida Cheminant

- PIERRE AUGER OBSERVATORY
- > We investigate the impact of a **modified** σ_{pp} on the Auger mass composition.

$$\sigma_{\mathrm{mod}}^{\mathrm{pp}} = \sigma_{\mathrm{orig}}^{\mathrm{pp}} f(E)$$

K. Almeida Cheminant

> We investigate the impact of a **modified** σ_{pp} on the Auger mass composition.

$$\sigma_{\mathrm{mod}}^{\mathrm{pp}} = \sigma_{\mathrm{orig}}^{\mathrm{pp}} f(E)$$

K. Almeida Cheminant

13

PIERRE

PIERRE AUGER OBSERVATORY

13

> We investigate the impact of a **modified** σ_{pp} on the Auger mass composition.

$$\sigma_{\mathrm{mod}}^{\mathrm{pp}} = \sigma_{\mathrm{orig}}^{\mathrm{pp}} f(E)$$

K. Almeida Cheminant

NTHELP 2024

Radboud Universiteit 💮 Nik hef

> We investigate the impact of a **modified** σ_{pp} on the Auger mass composition.

$$\sigma_{\mathrm{mod}}^{\mathrm{pp}} = \sigma_{\mathrm{orig}}^{\mathrm{pp}} f(E)$$

K. Almeida Cheminant

NTHELP 2024

PIERRE AUGER

> We investigate the impact of a **modified** σ_{pp} on the Auger mass composition.

$$\sigma_{\rm mod}^{\rm pp} = \sigma_{\rm orig}^{\rm pp} f(E)$$

K. Almeida Cheminant

NTHELP 2024

PIERRE AUGER

> We investigate the impact of a **modified** σ_{pp} on the Auger mass composition.

K. Almeida Cheminant

NTHELP 2024

We investigate the impact of a **modified** $\sigma_{_{\rm DD}}$ on the Auger mass composition. \succ

 $\sigma_{\rm mod}^{\rm pp} = \sigma_{\rm orig}^{\rm pp} f(E)$

K. Almeida Cheminant

NTHELP 2024

K. Almeida Cheminant

nt 💮 Niklhef 17

Summary & Outlook

- Mass composition fit results consistent with other analysis:
 - \star Light component at low energies.
 - ★ Intermediate mass nuclei at higher energies.
- p-p cross-section measurements consistent with model extrapolations.

Radboud Universiteit

K. Almeida Cheminant

Summary & Outlook

- Mass composition fit results consistent with other analysis:
 - \star Light component at low energies.
 - ★ Intermediate mass nuclei at higher energies.
- p-p cross-section measurements consistent with model extrapolations.

Perspectives

- > Upgrade of the Pierre Auger Observatory → a better mass discrimination is expected (see next talk by Jan Ebr).
- ➢ p-O collisions.
- Forward direction measurements (FASER, LHCf, FPF, and others).

