

Spin Physics Program of New Generation sPHENIX Detector at RHIC

RIKEN/RBRC Itaru Nakagawa

Outline

sPHENIX

NSRL

AGS

EBIS

BOOSTER

LINAC

sPHENIX Physics goals
Detector overview
Installation and commissioning
Commissioning Status

New Trendes in High Energy and Low-x Physics

100

RHIC

STAR

Stan DOB 1

What's new about sPHENIX

sPHENIX Detector

1.4T Solenoid from BaBar

- Hermetic coverage:
 |η|<1.1, 2π in φ
- Large-acceptance EM+H calorimeters: brings first full jet reconstruction & b-jet tagging at RHIC!!
- High data rates: 15 kHz for all subdetectors
- Precise tracking with tracking system in stream readout

Calorimeter system

Transverse Single Spin Asymmetry

$$A_{N} = \frac{1}{P} \frac{\sigma_{L}^{\pi} - \sigma_{R}^{\pi}}{\sigma_{L}^{\pi} + \sigma_{R}^{\pi}}$$

Origin of Left-Right Asymmetry

Hadron and EM Calorimeters

Inner HCal Installation

Tiny Bubbles of Primordial Soup Re-create Early Universe

MARCH 1, 2023 | 11 MIN READ

Tiny Bubbles of Primordial Soup Re-create Early Universe

New experiments can re-create the young cosmos, when it was a mash of fundamental particles, more precisely than ever before

BY CLARA MOSKOWITZ

Scientific America, March 2023

EMCal in position

Photon and Jet Data Taking in Run24 p+p

06/12/2024

 π^0 reconstruction using EM Calorimeter

- sPHENIX will have kinematic reach out to ~ 70 GeV for jets, kinematic overlap with the LHC.
- Sampled 82 pb⁻¹ w/g/jet trigger so far (Goal ~ 62 pb⁻¹).

з

5

4

6

Maximum 8x8 Energy Sum (EMCAL) [GeV]

7

8

9

Asymmetry Measurement of Jet(s)

Inclusive Jet $p^{\uparrow} + p \rightarrow jet + X$

- Transverse single spin asymmetry without final state effect (Spin dependent fragmentation)
- Possible flavor separation by tagging leading hadron charge. **Dijets** $p^{\uparrow} + p \rightarrow jet + jet + X$
- Kinematical advantage. Direct access to intrinsic transverse momentum of partons.
- Statistics is challenging as a trade off New Trendes in

Gluon TMD by Direct-γ

Y minny

TMD: Transverse Momentum Dependence Sensitive to Gluon orbital mortion

$$p^{\uparrow} + p \to \gamma + X$$

Much improved direct photon TSSA -> gluon TMD

MVTX

All Trackers installed in Position (March 30th, 2023)

New Trendes in High-Energy and Low-x Physics

INTT

Silicon pixel detector (MVTX)

- 29 um x 27 um, pixels
- 2.5 cm < R < 4.5 cm
- 20 BLCK integration time

Silicon strip detector (INTT)

- 78um, strip sensors
- 7cm < R < 11cm
- 1 BCLK timing resolution

Time projection Chamber (TPC)

- 20cm < R < 78cm
- Spatial resolution, ~100um
- Long drift time, ~13us
 TPC Outer Tracker (TPOT)

Cosmic Ray Track

Sensitive to gluon Sivers TMD function via

Statistics Hungry Measurement

Streaming readout of tracking detector 3-gluon correlation function of Single Spin Asymmetry.

Zero Degrees Forward Neutron Asymmetries

Confirmed the spin vector is pointing vertical in 1008 and observed asymmetries are consistent with published data.

sPHENIX Summary

- Large and hermetic EM and hadronic calorimetry.
- Highly precise tracking.
- 15kHz trigger rate and stream readout for trackers.
- Wide range of physics covered in sPHENIX
- Run24 p+p at \sqrt{s} =200GeV is ongoing. Taking 10 years of worthy data for high energy pQCD field until the EIC launches in 2032 at BNL.

