

# The future of experimental measurements of light-by-light scattering

Paweł Jucha pawel.jucha@ifj.edu.pl

Mariola Kłusek-Gawenda, Antoni Szczurek

New Trends in High-Energy and Low-x Physics  $2^{nd}\ September\ 2024$ 

- Light-by-Light scattering
  - Brief history
  - Elementary cross section
- Equivalent Photon Approximation
- Experimental predictions
  - ATLAS
  - Forward Calorimeter (FoCal) ALICE
  - ALICE 3
- Quest for VDM
- Pomeron-Pomeron

# Light-by-light scattering



- Light-by-light scattering is a process where two photons interact with each other.
- O. Halpern in 1933 proposed mechanism of interaction between two light quanta via virtual electron-positron pair
- First calculation of light-by-light scattering cross section was conducted by H. Euler, B. Kockel.

# Light-by-light scattering - elementary cross section



NY R Y



Fermionic box

- Fermionic box is the main mechanism of light-by-light scattering.
- The elementary cross section is calculated for unpolarised photons
   5 independent photon helicity combinations of the amplitudes was added up with with weights resulting from symmetry.



Elementary cross section of the light-by-light scattering box mechanism as distribution of energy.



Ratio of different box mechanism components to the total cross section.

# Light-by-light scattering - elementary cross section



- Vector Meson Dominance model involves oscillations of photons to the light mesons like ρ, ω, φ.
- Interactions of this mesons are described by amplitude from the Regge theorem:

$$A_{\gamma\gamma\to\gamma\gamma}(s,t) \approx \left(\sum_{i=1}^{3} C_{\gamma\to V_{i}}^{2}\right) \mathcal{A}(s,t) \exp\left(\frac{B}{2}t\right) \left(\sum_{j=1}^{3} C_{\gamma\to V_{j}}^{2}\right).$$

• The sum of amplitudes from box and VDM mechanisms must be added coherently.



The ratio of the coherent and incoherent sum of the box and VDM-Regge contributions divided by the cross section for the box contribution.

#### Light-by-light scattering - elementary cross section



# Light-by-light scattering background









 $2\pi$  production

- Main difficulties of light-by-light measurement in low p<sub>t</sub> region is two pion production.
- Two pions can decay to four photons, in many cases only two photons reach the detector.
- Previous research and new analysis can help reduce the impact of background on experimental results.

M. Kłusek-Gawenda, A. Szczurek,  $\pi^+\pi^-$  and  $\pi^0\pi^0$ pair production in photon-photon and in ultraperipheral ultrarelativistic heavy-ion collisions, Phys. Rev. C87 (2013) 054908.



Elementary cross section for  $\gamma \gamma \rightarrow \pi^0 \pi^0$  for  $|\cos \theta| < 0.8$ .

#### Equivalent Photon Approximation

• Nuclear cross section:

$$\begin{split} \sigma_{A_{1}A_{2} \to A_{1}A_{2}X_{1}X_{2}} &= \int \frac{\mathrm{d}\sigma_{\gamma\gamma \to X_{1}}\chi_{2}(W_{\gamma\gamma})}{\mathrm{d}\cos\theta} \times \mathcal{N}(\omega_{1}, b_{1})\mathcal{N}(\omega_{2}, b_{2})S_{abs}^{2}(b) \\ &\times \frac{W_{\gamma\gamma}}{2} dW_{\gamma\gamma} dY_{X_{1}X_{2}} d\overline{b}_{x} d\overline{b}_{y} d^{2}b \times \frac{\mathrm{d}\cos\theta}{\mathrm{d}y_{X_{1}}\mathrm{d}y_{X_{2}}\mathrm{d}p_{t}} \times \mathrm{d}y_{X_{1}}\mathrm{d}y_{X_{2}}\mathrm{d}p_{t} \end{split}$$

Photon flux:

$$N(\omega,b) = \frac{Z^2 \alpha_{em}}{\pi^2 \beta^2} \frac{1}{\omega b^2} \times \left| \int d\chi \ \chi^2 \frac{F(\frac{\chi^2 + u^2}{b^2})}{\chi^2 + u^2} J_1(\chi) \right|^2 \qquad u = \frac{\omega b}{\gamma \beta} \quad \chi = k_\perp b$$





Photon fusion.

#### Experimental results

| Year | Experiment | $p_{t,min}^{\gamma}$ [GeV] | $M_{\gamma\gamma,min}$ [GeV] | $\sigma_{tot.}^{exp.}$ [nb] | $\sigma_{tot.}^{theo.}$ [nb] |
|------|------------|----------------------------|------------------------------|-----------------------------|------------------------------|
| 2017 | ATLAS      | 3                          | 6                            | $70 \pm 29$                 | $51\pm5$                     |
| 2018 | CMS        | 2                          | 5                            | $120~\pm~55$                | $103~\pm~10$                 |
| 2019 | ATLAS      | 2.5                        | 5                            | $120\pm22$                  | $80\pm8$                     |

Total cross section for light-by-light scattering in collisions with energy  $\sqrt{s_{NN}} = 5.02$  TeV, in range of photon rapidity |y| < 2.4;  $p_{t,min}^{\gamma}$  is a minimal measured value of photon transverse momentum of single photon,  $M_{\gamma\gamma,min}$  is a diphoton invariant mass.



The average light-by-light scattering cross section value along with the individual cross section measurements at 5.02 TeV by ATLAS and CMS.

Current experiments have a high minimum threshold for transverse momentum of photon and diphoton invariant mass:  $p_i^{\gamma} > 2 \text{ GeV}$  $M_{\gamma\gamma} > 5 \text{ GeV}$ 

G. K. Krintiras, I. Grabowska-Bold, M. Kłusek-Gawenda, É. Chapon, R. Chudasama and R. Granier de Cassagnac, *Light-by-light scattering cross-section measurements at LHC.* arXiv:2204.02845, 2022.

Sharp edge of nucleus:

$$b_{min}=R_{A_{f 1}}+R_{A_{f 2}}pprox$$
 14 fm

• Smooth edge of nucleus:

$$S_{abs}^2(b) = exp\left(-\sigma_{NN}\int d^2
ho T_A(ec{
ho}-ec{b})T_A(
ho)
ight), \quad T_A(ec{
ho}) = \int 
ho_A(ec{r})\,dz$$



Differential cross section as function of diphoton invariant mass.



Ratios between different theoretical approaches.

Kinematical cuts for new ATLAS measurement:

 $egin{array}{l} |y_\gamma| \ < \ 4 \ p_t^\gamma \ > \ 2.5 \ {
m GeV} \end{array}$ 

The ATLAS collaboration, Expected tracking and related performance with the updated ATLAS Inner Tracker layout at the High-Luminosity LHC, ATL-PHYS-PUB-2021-024.

| $ y_{\gamma}  <$ | $\sigma_{tot.}^{theo.}$ [nb] | $\sigma_{tot.}^{exp.}$ [nb] |
|------------------|------------------------------|-----------------------------|
| 2.4              | $77.084 \pm 0.005$           | $120 \pm 22$                |
| 4                | $100.444\pm0.027$            | planned                     |

Total cross section for light-by-light scattering in collisions with energy  $\sqrt{s_{NN}} = 5.02$  TeV, in range of photon transverse momentum  $p_t^{\gamma} < 2.5$  GeV and diphoton invariant mass  $M_{\gamma\gamma} > 5$  GeV;  $y_{\gamma}$  is a rapidity of measured single photon.



Differential cross section as function of diphoton invariant mass for future and recent ATLAS measurement.

#### Forward Calorimeter (FoCal) ALICE

- Acceptance:  $3.4 < y_{\gamma} < 5.8$  $p_t^{\gamma} > 200 \text{ MeV}$
- Position resolution:  $\sigma_x = \sigma_y = 1 \text{ mm}$
- Energy resolution:

$$\frac{\sigma_E}{E} = \frac{28.5\%}{\sqrt{E(GeV)}} + \frac{6.3\%}{E(GeV)} + 2.95\%$$





A.P. de Haas et al. (ALICE Collaboration), The FoCal prototype — an extremely fine-grained electromagnetic calorimeter using CMOS pixel sensors, JINST 13 P01014, 2018.

C. Loizides, The Forward Calorimeter project in ALICE, EF06 meeting 2020, https://indico.fnal.gov/event/44126/ contributions/191953/attachments/132434/ 162766/20200805\_focal\_snowmass.pdf





Invariant mass distribution for the nuclear process. Predictions are made for the future FoCal acceptance  $E_{t,\gamma} > 200$  MeV and  $3.4 < y_{\gamma} < 5.8$ .

Results of combined theoretical results for light-by-light scattering and Monte Carlo simulation of energy and position resolution for diphoton invariant mass for FoCal detector.



| $p_{t,min}[GeV]$ | $p_{t,max}$ [GeV] | Y min | y <sub>max</sub> |
|------------------|-------------------|-------|------------------|
| 0.001            | 0.1               | 3     | 5                |
| 0.2              | 50                | -1.6  | 4                |

Assumed kinematic limits in ALICE 3 experiment for photon measurement.

ALICE 3 - a next-generation heavy-ion detector for the LHC Runs 5-6.

L. Musa, W. Riegler, Letter of intent for ALICE 3: A next generation heavy-ion experiment at the LHC, arXiv:2211.02491, 2022.



Differential cross section as function of diphoton invariant mass for future ALICE 3 experiment.

The differential cross-section for the VDM-Regge process in UPC, Pb-Pb collisions at  $\sqrt{s_{NN}} = 5.02$  TeV.



The red frames mark the acceptance range of the ALICE 3 detectors.

Wide rapidity range is key to the experimental observation of VDM.

#### Quest for VDM-Regge



Introduction of the new variable: difference of photons rapidity.



P. Lebiedowicz, O. Nachtmann, A. Szczurek, Extracting the Pomeron-Pomeron-f<sub>2</sub>(1270) coupling in the  $pp \rightarrow pp\pi^+\pi^-$  reaction through the angular distribution of the pions, Physical Reviev D **101**, 034008 (2020).

Naively, one can assume that:

$$\sigma = \int \frac{\mathrm{d}\sigma(M_{\pi\pi},\cos\theta)}{\mathrm{d}\cos\theta} f_{\mathbb{P}/p}(\omega_1) f_{\mathbb{P}/p}(\omega_2)$$
$$\frac{M_{\gamma\gamma}}{2} \mathrm{d}\omega_1 \mathrm{d}\omega_2 \mathrm{d}Y_{\pi\pi} \mathrm{d}M_{\pi\pi} \frac{\mathrm{d}\cos\theta}{\mathrm{d}y_1 \mathrm{d}y_2 \mathrm{d}p_t} \mathrm{d}y_1 \mathrm{d}y_2 \mathrm{d}p_t$$

However, consider that:

- for photons  $t_1 \approx 0$ ,  $t_2 \approx 0$ . For pomerons  $t_1 \neq 0$ ,  $t_2 \neq 0$  and  $t_1 \neq t_2$ ;
- one should use the 2  $\rightarrow$  4 kinematics;
- also assumption that p<sub>t,1</sub> = p<sub>t,2</sub> may be too optimistic.

# Summary

- Light-by-light scattering is a fundamental prediction of QED.
- Ultrarelativistic, ultraperipheral collisions of heavy ions allow observations of photon-photon processes hitherto not accessible.
- Light-by-light scattering not only provides evidence of the quantum nature of the electromagnetic interaction, but is also a tool to test the limits of theoretical models, and it provides a basis for the exploration of so-called "New Physics".
- Future experiments such as ATLAS, FoCal and ALICE 3 will improve statistics and extend the kinematic ranges of measurements, allowing theoretical predictions to be tested



P. Jucha, M. Kłusek-Gawenda, A. Szczurek, *Light-by-light* scattering in ultraperipheral collisions of heavy ions at two future detectors, Physical Reviev D 109, 014004, 2024.

Speaker acknowledges financial support provided by the Polish National Agency for Academic Exchange NAWA under the Programme STER– Internationalisation of doctoral schools, Project no. PPI/STE/2020/1/00020

Krakow School of Interdisciplinary PhD Studies

