

Study of <p_T > **scaling with m/n**_q **in relativistic heavy-ion collisions**

Oana RISTEA¹, Diana Deara¹, Catalin RISTEA^{1,2}, Alexandru JIPA¹, Tiberiu ESANU^{1,3}, Marius CALIN¹

University of Bucharest, Faculty of Physics, Bucharest-Magurele, Romania
 Institute of Space Science, Bucharest-Magurele, Romania
 National Institute of Nuclear Physics and Engineering Horia Hulubei, Bucharest-Magurele, Romania

Outline

Motivation and data used

Results

Conclusions

Heavy-ion collision evolution

Visualization by J.E. Bernhard, arXiv:1804.06469

- thermal (kinetic) "freeze-out" (FO) --> kinetic FO temperature and average transverse flow velocity

- the collective transverse expansion of the system --> entirely generated and develops throughout the entire evolution of the system created in the collision

- the shape of the transverse momentum distributions of the identified charged hadrons --> sensitive to the dynamics of the nucleus-nucleus collisions.

O. Ristea et al. - 04/09/24

Particle source

Final state spectra \rightarrow system properties at thermal freezeout

Thermal source \rightarrow spectrum slope reflects the temperature of the fireball

 $rac{dN}{m_T dm_T} \sim e^{-m_T/{
m T_{slope}}}$ where $m_T \equiv \sqrt{p_T^2 + m^2}$

Particle source

Final state spectra \rightarrow system properties at thermal freezeout Thermal source \rightarrow spectrum slope reflects the temperature of the fireball $\frac{dN}{m_T dm_T} \sim e^{-m_T/T_{slope}}$ $\frac{explosive}{source}$

Data \rightarrow shape is different in p-p and A-A \rightarrow stronger effect for heavier particles

Flow → collective motion of particles (due to high pressure arising from compression and heating of nuclear matter) superimposed on thermal motion O. Ristea et al. - 04/09/24

Data

STAR-BES Au-Au data at √sNN = 7.7, 11, 19.6, 27 and 39 GeV

$$\langle p_T \rangle = \frac{\int_0^\infty p_T(2\pi p_T) f(p_T) dp_T}{\int_0^\infty (2\pi p_T) f(p_T) dp_T}.$$

For K^{o}_{s} , φ , $\Omega \rightarrow$ an exponential function:

$$\frac{d^2 N}{2\pi p_T dp_T dy} = A \exp\left(-\frac{m_T - m}{T}\right)$$

For Λ , $\Xi \rightarrow$ Boltzmann function:

$$\frac{d^2N}{2\pi p_T dp_T dy} = A m_T \exp\left(-\frac{m_T - m}{T}\right)$$

Fit range: $0 < p_T < 2 \text{ GeV/c}$ (for K^o_s, ϕ, Λ) and $0 < p_T < 2.6 \text{ GeV/c}$ (Ξ, Ω)

O. Ristea et al. - 04/09/24

Mean transverse momentum

 $<\!p_{_{T}}\!>$ reflects the slopes of the $p_{_{T}}$ spectra

 $< p_{T} >$ increases with the mass for all RHIC-BES energies

J. Adam et al., STAR coll., Phys.Rev.C 102 (2020),034909; L. Adamczyk et al., Phys. Rev. C 96, 044904 (2017); L. Adamczyk et al., Phys. Rev. C 93, 21903 (2016); J. Adams et al, STAR coll., Phys. Rev. C 99, 064905 (2019), M. S. Abdallah et al., STAR coll., Phys. Rev. C 107 (2023) 34907 O. Ristea et al. - 04/09/24

Mean transverse momentum

J. Adam et al., STAR coll., Phys.Rev.C 102 (2020),034909; L. Adamczyk et al., Phys. Rev. C 96, 044904 (2017); L. Adamczyk et al., Phys. Rev. C 93, 21903 (2016); J. Adams et al, STAR coll., Phys. Rev. C 99, 064905 (2019), M. S. Abdallah et al., STAR coll., Phys. Rev. C 107 (2023) 34907
 O. Ristea et al. - 04/09/24

O. Ristea et al. - 04/09/24

<p_T> vs energy

- mass dependence of $<\!p_{_T}\!>$ --> transverse collective flow --> larger $p_{_T}$ kick for particles with higher mass

- very weak energy dependence

J. Adam et al., STAR coll., Phys.Rev.C 102 (2020),034909; L. Adamczyk et al., Phys. Rev. C 96, 044904 (2017); L. Adamczyk et al., Phys. Rev. C 93, 21903 (2016); J. Adams et al, STAR coll., Phys. Rev. C 99, 064905 (2019), M. S. Abdallah et al., STAR coll., Phys. Rev. C 107 (2023) 34907 O. Ristea et al. - 04/09/24

<p_> vs centrality

 $- < p_{\tau} >$ increases with Npart for all energies --> gradual development of the transverse collective motion with increasing medium volume

- < pT> for K_{s}^{0} increases slightly with centrality, while for particles with higher mass, the increase is stronger --> contribution of the collective flow proportional with the particle mass

- $<p_{T}>$ of baryons as a function of reduced mass increases with a different slope compared with $<p_{T}>$ of mesons

- for all energies, the average $p_{\scriptscriptstyle T}$ for baryons is larger than for mesons

O. Ristea et al. - 04/09/24

- at 7.7 GeV, no Ω data in this centrality class
- at 11.5 GeV, 10-60% centrality class for Ω

20-30%/20-40%

- 20-30%: π, K^{+,-}, K^{\scriptscriptstyle 0}_{\scriptscriptstyle S}, K^{*0} , φ, p, Λ, Ξ

- 20-40%: K*⁰ (7.7 GeV), Ω (19.6-39 GeV)

- 60-70%: π, K^{+/-}, p
- 60-80%: K_{s}^{0} , ϕ , Λ , Ξ , K^{*0}
- 60-80%: Ω (39 GeV)

- the differences in $<\!p_{_T}\!>$ values between the baryons and mesons are smaller in peripheral collisions

O. Ristea et al. - 04/09/24

Meson slopes

- the slopes of $<p_T> = f(m/n_q)$ for mesons extracted from linear fits

- pion multiplicities are taken from L. Adamczyk et al., STAR Collaboration, Phys. Rev. C 96, 044904 (2017)

$$dN/dy_{\pi} = 1.5 \cdot (dN/dy_{\pi^+} + dN/dy_{\pi^-})$$

- for all energies, the slope increases with pion multiplicity from peripheral to semi-central collisions, while for central collisions seems to saturate

Baryon slopes

- for baryons, the $<\!p_{\tau}\!>=f(m/n_{_q})$ dependence is fitted with a 1st degree polynomial

- pion multiplicities are taken from L. Adamczyk et al., STAR Collaboration, Phys. Rev. C 96, 044904 (2017)

- different behaviour for baryons compared to meson slopes

AMPT model comparison – central collisions

- 0-5%/0-10% centrality

- A Multi-Phase Transport (AMPT) --> a Monte Carlo transport model for heavy-ion collisions at relativistic energies --> includes both initial partonic and final hadronic interactions, and the transition between these two phases of matter.

- AMPT-default describes better the (anti)baryon $< p_T >$; but overestimates the $\phi < p_T >$

- AMPT-SM underestimates the $< p_T >$ for baryons and for φ O. Ristea et al. - 04/09/24

Model comparison – central collisions

- 0-5%/0-10% centrality

- AMPT-default describes better the (anti)baryon $< p_T >$; but overestimates the $\phi < p_T >$
- AMPT-SM underestimates the $< p_T >$ for baryons

Model comparison – central collisions

- 0-5%/0-10% centrality

- AMPT-default describes better the (anti)baryon $< p_T >$; but overestimates the $\phi < p_T >$
- AMPT-SM describes $\langle p_T \rangle$ for mesons; smaller values of baryon $\langle p_T \rangle$ compared to antibaryons

Model comparison – peripheral collisions

- 40-05%/40-60% centrality

- AMPT-default overestimates the (anti)baryon and meson $< p_T >$
- AMPT-SM describes better $< p_{T} >$ for mesons and baryons

Model comparison – peripheral collisions

- 40-05%/40-60% centrality

- AMPT-default overestimates the (anti)baryon and meson $<p_{T}>$
- AMPT-SM describes better $< p_T >$ for mesons and baryons

Model comparison – peripheral collisions

- 40-05%/40-60% centrality

- AMPT-default overestimates the (anti)baryon and meson $<\!p_{\scriptscriptstyle T}\!>$
- AMPT-SM describes better $<\!p_{_T}\!>$ for mesons and baryons; the $<\!p_{_T}\!>$ for antibaryons is larger that of baryons

Blast-wave model

- → A cylindrical expanding fireball in local thermal equilibrium, in which the particles are locally thermalized at a kinetic freeze-out temperature and are moving with a common transverse collective flow velocity (E. Schnedermann et. al, PRC48 (1993) 2462).
- → The p_T spectrum of produced particles described by:

$$\frac{dN}{p_T dp_T} \propto \int_0^R r \, dr \, m_T I_0 \left(\frac{p_T \sinh \rho(r)}{T_{\rm kin}}\right) \times K_1 \left(\frac{m_T \cosh \rho(r)}{T_{\rm kin}}\right),$$

→ The radial flow velocity profile parametrized as:

 \rightarrow The average transverse radial flow velocity is:

$$\langle \beta_T \rangle = \frac{2}{n+2} \beta_s$$

Blast-wave analysis of strange hadron spectra

--> BW fits on the p_{T} spectra of strange hadrons in Au+Au collisions at $\sqrt{s_{NN}} =$ 7.7, 11.5, 19.6, 27, 39 GeV from the STAR experiment

--> standard BW analyses --> π^+ , π^- , K⁺, K⁻, p and anti-p spectra fits

--> fit ranges: for kaons p_{T} <1.4 GeV/c; for strange baryons p_{T} <2.5 GeV/c

--> pulls distributions calculated as:

(data - fit value)/data error

J. Adam et al., STAR coll., Phys.Rev.C 102 (2020),034909; L. Adamczyk et al., Phys. Rev. C 96, 044904 (2017); L. Adamczyk et al., Phys. Rev. C 93, 21903 (2016)

Energy dependence

--> in most central Au-Au collisions, similar T and $<\beta_{T}>$ within errors in this energy range for strange, non-strange and bulk hadrons --> indicate common freeze-out conditions for the strange/non-strange hadrons

--> very weak energy dependence of T and $<\!\beta_{\tau}\!>$ parameters

--> n increases slowly with energy

Conclusions

- in Au+Au collisions at RHIC-BES energies, $\langle p_T \rangle$ increases with particle mass indicating the presence of the radial flow in the system \rightarrow two different linear trends can be observed for non-strange hadrons and strange hadrons separately.

- $<p_{T}>$ of each studied particle species increases with N_{part} at all RHIC-BES energies, indicating a stronger collective motion in more central collisions

- weak energy dependence for the analyzed energy range
- different behaviour of $< p_T >$ as a function of m/n for mesons and baryons

- for central collisions, the default AMPT is generally better than the SM version to describe $<p_{T}>$ for mesons and baryons, while peripheral collisions $<p_{T}>$ are better described by AMPT-SM

- the values of strange particles freeze-out T and $<\beta_{\tau}>$ are similar within errors with the corresponding parameter values extracted from BGBW fits on bulk and non-strange particles p_{τ} spectra.