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https://cms-mgt-conferences.web.cern.ch/conferences/conf_display.aspx?cid=3759


Summary, directions and future trends
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What are the trends of experimental 
Standard Model physics in 2024?

Phenomenology of SM measurements at LHC

Selected recent results from ATLAS and CMS 

Single boson, multiboson and boson+jets at 
 TeVs = 13(.6)

Where we are and where we go in SM physics

outline 
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Introduction: a brief history of the Standard Model (up to 2024)
1954 Yang & Mills gauge theory of strong interactions.


1956 M.me Wu parity violation in weak interaction.


1961 Glashow combined the electromagnetic and weak 
interactions


1967 Weinberg & Salam incorporated the Higgs mechanism into 
electroweak interaction giving it its modern form

1973 discovery of neutral currents from the Z at CERN


1983 discovery of the W and Z bosons at CERN

 

1989-2000, 11 years of electroweak precision tests at LEP 


1995 top quark discovery @ Fermilab 


2012 Higgs boson discovery @ CERN


2024  LHC era my presentation→

https://en.wikipedia.org/wiki/Strong_interaction
https://en.wikipedia.org/wiki/Chien-Shiung_Wu
https://en.wikipedia.org/wiki/Weak_interaction
https://en.wikipedia.org/wiki/Electromagnetism
https://en.wikipedia.org/wiki/Weak_interaction
https://en.wikipedia.org/wiki/Weak_interaction
https://en.wikipedia.org/wiki/Higgs_mechanism
https://en.wikipedia.org/wiki/Electroweak_interaction
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Phenomenology of SM measurements at colliders: the initial state 

LHC p-p collisions  = 13 TeV (Run II) and 13.6 TeV (Run III)s

 = ~137 / fb (Run II) + ~100 /fb (Run III by 2024)∫ Ldt =
Aiming at >300 fb-1 (Run2+Run3) by the end of 2025

up to 63 simultaneous 
collisions/event

…how do we realize 
our SM process? →
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Phenomenology of SM measurements at colliders: the final state 
at the LHC the QCD dominates the initial + EW appears everywhere: modelling, tuning… 

PDF
αS

scales

UE,MPI

EW+QCD radiation

particle reconstruction and measurement cross 
section SM couplings, SM parameters….

→
→

we need great experimental performances and accurate simulation to reach precision!

(a Drell-Yan+Jets process )

SU(3)
SU(2)XU(1)



6

Phenomenology of SM measurements at colliders: trends

single boson

multiboson

boson + quarks

• test of the SM: measurement of key parameters

• at the heart of the EW theory: MW, sin2 θW

• rare W/Z decay sensitive to new physics via loop

• test of the non-abelian nature of the EW interaction

• anomalous gauge couplings experimental contrains

• rare SM processes like WZ , WWZγ

• critical for higgs physics and searches

• powerful test of pQCD: 
PDF, scale, strong 
coupling

• heavy flavour content of 
the proton 

• main background of 
several Higgs channels + 
heavy particle searches, 
heavy fermions, susy…
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disclaimer!

Standard Model results at the LHC means a huge collection of 
extraordinary experimental results including VBS, Higgs, top… a lot of 

amazing scientific achievements are available!  

what comes next is… my personal overview of the  
most recent W/Z results at 13 and 13.6 TeV from ATLAS and CMS

you can have a look at the full gallery of results 
from the two experiments here:

http://cms-results.web.cern.ch/cms-results/public-results/publications/SMP/index.html

[enjoy!]

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/WebHome#Recent_Results

http://cms-results.web.cern.ch/cms-results/public-results/publications/SMP/index.html
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14 years plot of Standard Model Physics at CMS 

https://arxiv.org/abs/2405.18661

Led Zeppelin IV (1971)

ATLAS version: https://arxiv.org/abs/2404.06829
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Standard Model results with ATLAS and CMS 

single boson properties precision measurements 

multiboson, couplings & polarization

V + jets
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Standard Model results with ATLAS and CMS 

single boson properties precision measurements 

multiboson, couplings & polarization

V + jets
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W boson mass, width and momentum with ATLAS

arXiv:2404.06204 arXiv:0901.0512

• After the CDF claim (7  away from 
the SM), re-analysis of 7 TeV data 
motivated by large discrepancy in 
CDF measurement

σ

• Separate measurement of the W 
mass and width (first measurement 
at the LHC)

• Precision transverse momentum 
measurement in a dedicated study

• Extended improvements on PDF, 
theory predictions, momentum 
calibration…

W± → ℓ±νℓ

,

https://cerncourier.com/a/cdf-sets-w-mass-against-the-standard-model/
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W boson mass, width and momentum with ATLAS arXiv:2404.06204
arXiv:0901.0512

mW =80366.5 ± 15.9 MeV W =80366.5 ± 15.9 MeVΓ



W boson mass, width and momentum with ATLAS arXiv:2404.06204
arXiv:0901.0512

unfolded transverse momentum of the W stability over PDF sets / uncertainty 



W boson mass, width and momentum with ATLAS arXiv:2404.06204
arXiv:0901.0512

comparison of the W mass 
measurement to the global EW 

fit, TeVatron and LEP data



15Electroweak mixing angle with  CMS

dσ
d cos θ

∼ 1 + cos2 θ + 1
2 A0(1 − 3 cos2 θ) + A4 cos θ

sin2 θW = (1 − m2
W /m2

Z)at the heart of the Standard Model

at the LHC the effective mixing angle (leptonic) is 
measured using DY events in the Collin-Soper frame 

AFB = 3A4/8 → sin2 θℓ
eff

- Two most precise measurements from LEP & SLC differ by ∼ 3σ.  
- Latest CDF-II mW has significant tension  
- models that describe CDF mW prefer lower (SLD) values

improvements: 

- electrons reco outside tracker acceptance 

- rapidity-dependent: no ambiguity in quark direction

- unfolded A4 also measured 

|η | < 4.36

a puzzling past:

(also for  )e+e−

arXiv:2408.07622

Signal generated with  
POWHEG MiNNLO + Pythia8 + Photos; NLO weak + universal HO corrections 
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0.23157 ±0.00010 (stat) ±0.00015 (syst)  ± 0.00009 (theo) ± 0.00027(PDF)sin2 θℓ
eff =

Electroweak mixing angle with  CMS

most precise at hadron colliders and comparable to LEP and SLD precision

arXiv:2408.07622



CMS: PLB 842 (2023) 137563
ATLAS: Phys. Lett. B 854 (2024) 138705Measurement of the Z invisible width CMS: PLB 842 (2023) 137563
ATLAS: Phys. Lett. B 854 (2024) 138705

http://dx.doi.org/10.1016/j.physletb.2022.137563
https://www.sciencedirect.com/science/article/pii/S0370269324002636?via=ihub
http://dx.doi.org/10.1016/j.physletb.2022.137563
https://www.sciencedirect.com/science/article/pii/S0370269324002636?via=ihub


use the monojet dark matter strategy as a way to make a precision SM measurement
first measurement of the Z invisible width at any hadronic collider 

both ATLAS and CMS reach LEP’s level of precision

Measurement of the Z invisible width CMS: PLB 842 (2023) 137563
ATLAS: Phys. Lett. B 854 (2024) 138705

http://dx.doi.org/10.1016/j.physletb.2022.137563
https://www.sciencedirect.com/science/article/pii/S0370269324002636?via=ihub


Measurement of the Z invisible width

CMS ATLAS

CMS: PLB 842 (2023) 137563
ATLAS: Phys. Lett. B 854 (2024) 138705

http://dx.doi.org/10.1016/j.physletb.2022.137563
https://www.sciencedirect.com/science/article/pii/S0370269324002636?via=ihub
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Standard Model results with ATLAS and CMS 

multiboson couplings & polarization

V + jets

single boson properties precision measurements 
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Diboson with ATLAS and CMS at =13.6 TeV: ZZs

Phys. Lett. B 855 (2024) 138764

https://www.sciencedirect.com/science/article/pii/S0370269324003228
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Diboson with ATLAS and CMS at =13.6 TeV: ZZs Phys. Lett. B 855 (2024) 138764

inclusive cross section extrapolated to the total phase space (66<mZ<116) GeV for 
both Z bosons, yielding  (16.8±1.1) pb , accuracy up to NNLO QCD + NLO EW

ZZ → 4ℓ(ℓ = μ, e)

https://www.sciencedirect.com/science/article/pii/S0370269324003228
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Diboson with ATLAS and CMS at =13.6 TeV: WWs PLB 855 (2024) 138764 

σexp = 125.8 ± 3.7 pb (QCD NNLO and EW NLO from MATRIX)

Inclusive and normalized 
xsec measurement

fiducial phase space

σobs = 125.7 ± 2.3(stat) ± 4.8(syst) ± 1.8(lumi) pb   



Diboson with ATLAS and CMS at =13.6 TeV: WZs CMS-PAS-SMP-24-005

24

eee, eeμ, μμe, μμμfinal states

prompt lepton discrimination strategy

WZ production cross section phase space mZ within 30 GeV:

σtotal(pp → WZ) = 55.2 ± 1.2(stat) ± 1.2(syst) ± 0.8(lumi) ± 0.1(theo)pb
precision compatible with 
previous measurements

accuracy @ NNLO QCD X NLO EWK
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Z  invisible and triple gauge coupling γ

Exactly 1 high-pT (>225 GeV) photon + MET 
BDT algorithm to identify high-pT photons (92% efficiency)

True photons bkg:  
γ+jets, VV (from MC), W(→Iν)γ (from CR in data) 

Fake photons bkg:   
e→γ, jet→γ (data-driven) 
Particles interacting with ECAL barrel’s APDs (data-driven) 
Beam Halo in ECAL endcaps (data-driven)

New BH tagger built using energy deposits 
Forward (1.6 < |η| < 2.5) photons included in the analysis for the first time

High-pT 
sensitivity to 

aNTGCs

CMS-PAS-SMP-22-009

strategy

https://cds.cern.ch/record/2895314?ln=en
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Z  invisible and triple gauge coupling γ CMS-PAS-SMP-22-009

https://cds.cern.ch/record/2895314?ln=en
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Z  invisible and triple gauge coupling γ CMS-PAS-SMP-22-009

https://cds.cern.ch/record/2895314?ln=en


28

Observation of WZ  and WWγ γ PRL132 (2024) 021802
PRL132 (2024) 121901

6.3 (5.0)𝜎 obs.(exp.) 5.6 (4.7)𝜎 obs.(exp.)
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Observation of WZ  and WWγ γ PRL132 (2024) 021802
PRL132 (2024) 121901



31

Standard Model results with ATLAS and CMS 

multiboson couplings & polarization

V + jets

single boson properties precision measurements 
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Z+jets event topology with ATLAS 
JHEP06(2023)080

 GeVpT ≥ 100

 Z boson is balanced against a single high-pT jet

Z +  1 anti 04  jet ≥ kT  GeVpT ≥ 100 |y|<2.5jets:µµ/ee (25GeV) +

Δ𝑅 min 𝑍𝑗  1.4≤
Δ𝑅 min 𝑍𝑗  2≥

standard

selection

  600 GeVST ≥

Z+2jetsZ+1jets searches
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Z+jets event topology with ATLAS 
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Z+jets event topology with ATLAS 
JHEP06(2023)080

 GeVpT ≥ 100

 Z boson is balanced against a single high-pT jet

Z +  1 anti 04  jet ≥ kT  GeVpT ≥ 100 |y|<2.5jets:µµ/ee (25GeV) +

Δ𝑅 min 𝑍𝑗  1.4≤
Δ𝑅 min 𝑍𝑗  2≥

Z+2jetsZ+1jets

standard

selection

  600 GeVST ≥

searches
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Z+jets event topology with ATLAS 

unfolded jet multiplicity unfolded Z boson pT

up to three partons at NLO

up to four partons at LO
virtual NLO EW corr.
fixed order NNLO



pT(Z) < 10GeV

Z boson is only 
weakly correlated 
with the leading jet

unfolded differential cross sections
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Z+jets event topology with CMS 
Eur. Phys. J. C 83 (2023) 722

http://dx.doi.org/10.1140/epjc/s10052-023-11833-z
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Z+jets event topology with CMS 
Eur. Phys. J. C 83 (2023) 722

pT(Z) < 10GeVunfolded differential cross sections

Multi-parton 
interaction 

contribution  is 
about 40% 

http://dx.doi.org/10.1140/epjc/s10052-023-11833-z
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Z+jets event topology with CMS 
Eur. Phys. J. C 83 (2023) 722

unfolded differential cross sections

 GeVpZ
T ≥ 100Z boson is highly 

correlated with the 
leading jet, and 

peaks in the back-
to-back region.

http://dx.doi.org/10.1140/epjc/s10052-023-11833-z
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Z+jets event topology with CMS 
Eur. Phys. J. C 83 (2023) 722

 GeVpZ
T ≥ 100

unfolded differential cross sections

higher order 
matrix 

elements 
become 

important

http://dx.doi.org/10.1140/epjc/s10052-023-11833-z
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Summary, directions and new trends

A discovery machine like LHC turned out to be the most 
powerful precision machine for experimental SM in the world: 
huge set of unprecedented high-precision measurements

We’re improving our understanding of the Universe with to critical 
precision SM measurements (  but also Higgs, top, 
VBS)

mW, sin2 θW

trends1 : achieving new precision with single boson 
measurements: PDFs, NNLO predictions, exp methods, 
statistics  

trends2 : multiboson at the tails of distributions: EFT 
approaches, polarization, VBF & search @ high  

trends3 : V+jets, topology, new predictions, flavour (largely 
unexplored final states, stat. limited, long standing unsolved 
modeling issues)

pT

see Evelin’s talk!
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backups
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Status of theoretical calculations
• MadGraph5_aMC@NLO (ME) + PYTHIA8 / HERWIG (PS) 

- LO: up to 4 partons, kT-MLM matching 
- NLO: up to 2 partons, FxFx merging 

• Powheg (ME) + PYTHIA8 (PS) up to NLO 
• Sherpa (ME + PS) up to NLO 
• Geneva 1.0-RC2 (ME) + PYTHIA8 (PS): 

- NNLO DY production + NNLL higher order resummation 
- Only for Z+jets processes 

• MCFM (ME) 
- Z/W+1 jet NNLO calculations

Samples 0 j 1 j 2 j 3 j 4 j > 4 j

LO MG5_aMC LO LO LO LO LO PS

NLO MG5_aMC/Powheg NLO NLO NLO LO PS PS

Geneva NLO NLO LO PS PS PS

Z/W+1 jet @ NNLO - NNLO NLO LO - -

NNPDF PDFs 
available at LO and 

NLO  
MMTH PDF set at 

NLO 
several (CP5) 

PYTHIA8 tunes

• HF treatment 
- 4FS, b mass and 4 PDFs 
- 5FS b mass=0 and 5 PDFs



How all of this is possible 
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precision SM tests, differential 
spectra and sensitivity to very rare 
processes are possible exploiting 

the ATLAS and CMS excellent 
detector performances

Electrons identification with 
 and  Z → e+e− J/ψ → e+e−

both ATLAS and CMS achieve 
sub-% precision



How all of this is possible 
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Muons identification with  
up to 1 TeV

Z → e+e−

Muons 

Reconstruction

and Isolation


efficiency

Outstanding


precision
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ATLAS CMSboth deliver jet energy corrections

Less than 2% in the region pT > 100 GeV!

Correct for
Pile-Up
Jet Flavor Composition
Absolute/Relative Scale

LHCb: ~10-15% for pT  of 10–100 GeV

thanks to several 

in-situ methods 

How all of this is possible 
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ATLAS

Jet Reconstruction: Strategy
CMS

LHCb

anti-kT clustering algorithm

topological 
calorimeter-cell 

clusters

particle-flow

uses all the sub-detectors 
information to reconstruct objects

(infrared and collinear safe)

ATLAS/CMS: R=0.4 (Run II)

LHCb acceptance  
forward direction

Particle Flow

(2 < η < 5)

calo cell ET~10 GeV saturation

use the precise 
tracking information

use 
particles! 
(Λ,Ks,π,..)

LHCb: R=0.5
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Heavy flavor tagging at collider

tagging using b- and c- inclusive tagger

reconstruct the two-body vertices in the event
merge SV  n-body by linking tracks and vertices associated

reconstruct jets with the anti-kT05 algorithm

recipe

associate vertices/jets requiring ∆R(SV, jet) < 0.5

JINST 10 (2015) P06013

SV

jet

light-jet mistag rate < 1% for b-tag efficiency of 65% and c-tag efficiency of 25% 

BDT trained on SV/j properties to separate heavy/light
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high-level taggers: MVA using all the information 
available to maximize the b-tag performance

several taggers: 
track based (impact parameter tag)
soft muon (discriminate µ from b decays)
vertex based

BDT

Deep Learning Neural Network 

trained on top + Z’bb events  
(hybrid training)

b-tag efficiency of 
77% and c-tag 
efficiency of 25% 

combine inputs from track, particle and vertex-based physics taggers using multivariate classifier

mistag rate of light 
flavored jets using 
dijet events with 
negative tag 
< 2% under pT = 1 
TeV

ATL-PHYS-PUB-2017-013
ATLAS-FTAG-2017-003 

Heavy flavor tagging at collider
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several taggers: 

Jet Probability: likelihood that jets is coming 
from primary vertex using tracks
Combined (CSV):  combination of 
displaced tracks with SV info associated 
to the jet using an MVA

CSVv2  evolution of CSV using neural 
networks
cMVAv2 combines all the taggers

deepCSV: based on CSVv2  
+ more charged particles, based on deep NN

CERN-CMS-DP-2017-005
CMS-PAS-BTV-15-001

b jet efficiency
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1

JP
CSV(Run1)
CSVv2(AVR)
CSVv2
cMVAv2

udsg
c

=13 TeV, 25nss
CMS Simulation

 eventstt
 > 30 GeV)

T
AK4 jets (p

improves 
~4% the b-
tag 
efficiency 
with a 
mistag rate 
of 0.1%deepCSV

Heavy flavor tagging at collider
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Observation of WZ  and WWγ γ PRL132 (2024) 021802
PRL132 (2024) 121901

σWWγ = 6.0 ± 0.8(stat) ± 0.7(syst) ± 0.6(modeling)fb

Sensitive to Higgs couplings 
with light quarks (no gluon 
fusion contribution due to 
Furry’s theorem)

SR: 0 and >0 jet, eµ channel only 

 ●  SSWW𝛾 and TOP+𝛾 by control regions,  

 ●  data-driven non-prompt backgrounds  
 ●  maximum likelihood fit of 2D binned distributions. 


