V+heavy flavour measurements at ATLAS

E. Meoni (Università della Calabria & INFN)

on behalf of the ATLAS Collaboration

New Trends in High-Energy and Low-x Physics 2024, 1–5 Sept 2024, Sfantu Gheorghe, Romania

Introduction

V(=W/Z) + (inclusive) jets abundantly produced at the LHC and measured up to a large jet multiplicities and in extreme phase spaces already in Run-1 (7 TeV and 8 TeV)

V + heavy flavours (= c- and b-quarks) more challenging to measure and to predict

2 recent ATLAS V+HF measurements with Run-2 dataset (13 TeV, 140 fb⁻¹):

W + ≥1 charmed hadron
(Phys. Rev. D 108 (2023) 032012)

- Z + ≥1 c-jet or ≥ 1 b-jet or ≥ 2 b-jets (arXiv:2403.15093)

Motivations

V+HF measurements :

- Precision test of the perturbative QCD:
 - fixed order calculations up to NNLO and MCs with multileg NLO matrix elements (ME) + Parton Showers (PS)
 - various flavour schemes (FS) in ME with different
 - c- and b-mass treatments

Inputs to improve the understanding of proton structure (PDFs):

- W+c sensitive to s-quark content of the proton
- Z+c sensitive to Intrinsic Charm component of the proton (IC: $|p > = |uudc\bar{c} >$)
- Inputs to improve the background modelling in MCs for Higgs-boson measurements and searches of New Physics

W plus a c-quark identified via reconstruction of a charmed hadron (Phys. Rev. D 108 (2023) 032012)

-W⁺ and W⁻ measurements allow to study the $s - \overline{s}$ asymmetry

-W and c-quark always have opposite charge (OS), while backgrounds are mostly symmetric in charge (SS)

4

Strategy of the measurement

Secondary vertex \mathbf{k}

(SV)

Primary vertex

W (\rightarrow lv) selection

c-quark identified via: $D^+ \rightarrow K^- \pi^+ \pi^+$ $D^{*+} \rightarrow D^0 \pi^+ \rightarrow (K^- \pi^+) \pi^+$ and their charge conjugates

Signal (S) and background (B) extraction

Fit done in bins of p_T^D or $|\eta^{lep}|$

Templates for W+c - signal, W+c background (but diverse final state from signal), W+jets (no c-jets), top and minor background from MC

Multijet: determined from data in enriched CR

- 1 isolated *e* or μ with p_T > 30 GeV and central ($|\eta| < 2.5$), E_T^{miss} > 30 GeV, m_T^W > 60 GeV
- b-jet veto (to reject top background)
- D⁺(D⁰) candidate reconstructed with a fit of the associated tracks to a common SV
- ≥ 1 isolated D(*) with 8 GeV< p_T <150 GeV $\mid\!\eta\!\mid$ <2.2
- Likelihood fit of m(D⁺) for D⁺ and of m(D^{*+} D⁰) for D^{*} in Signal Region (SR) and N_{evt} in top control region (≥ 1 b-jet CR)
- OS and SS fitted simultaneously and S extracted from the OS-SS difference

Inclusive W+D cross-section

Uncertainty of the measurement (\sim 5%) smaller than theoretical precision of the predictions Data in good agreement with predictions from different PDF sets

R_c ratio

 $R_{c} = \sigma(W^{+} + D^{-}) / \sigma(W^{-} + D^{+})$

Precision of measured $R_c \sim 1\%$

Smaller uncertainties for PDF sets with symmetric strange-quark sea ($s = \bar{s}$, ABMP16 and CT18) than sets allowing asymmetry (NNPDF or MSHT), data more precise than predictions in this second case

Data agree with all PDF sets within the uncertainties, although some tension shown with NNPDF 4.0

Small $s - \bar{s}$ asymmetry in the region probed by this measurement

W+D differential cross-sections

All predictions with different PDFs have similar p_T^D shape \rightarrow observable sensible to MC modelling not to PDFs

 $|\eta(lep)|$ has smaller systematics and good sensitivity to PDFs

 η distribution broader in data than predictions but consistent when including uncertainties

 $Z + \ge 1 \text{ b-quark }, Z + \ge 2 \text{ b-quarks, } Z + \ge 1 \text{ c-quark},$ b- and c-quark identified with jet reconstruction and a flavour tagging algorithm

(arXiv:2403.15093)

Strategy of the measurement

S

Z (\rightarrow 11) selection

2 isolated OS *e* or μ with $p_T > 27$ GeV and central, 76GeV< $m_{11} < 106$ GeV

 ≥ 1 or ≥ 2 flavour-tagged jets with $p_T{>}20$ GeV $\mid\! y\!\mid\! {<}2.5$

c- and b-quark identified via flavour tagging

DL1r algorithm exploits b-quark properties (i.e. long lifetime and heavy mass) relying on track-based observables (displaced tracks, secondary vertex, longitudinal impact parameter, decay topologies)

DL1r Working Point at 85% b-jets efficiency and 38% c-jets efficiency

Background determination

ttbar: data-driven technique in dedicated CR $(1e1\mu)$ Multijet: data-driven technique found negligible Z+jets components from a fit to data of a flavour sensitive variable, templates from MC, fit performed in individual bins of each observable Minor backgrounds from MC

Inclusive $Z + \ge 1$ b-jet and $Z + \ge 2$ b-jet cross-sections

- Uncertainty on the measurement: $\sim 6\%$ (Z+ ≥ 1 b-jet), $\sim 10\%$ (Z+ ≥ 2 b- jets)

- Data compared with a variety of MC predictions with different FSs: 5FS NLO ME+PS MCs (MGaMC+Py8 FxFx and Sherpa) describe Z+b and Z+bb, while 4FS Zbb NLO MC (MGaMC+Py8 Zbb) describes only Z+bb largely underestimating Z+b

Differential $Z + \ge 1$ b-jet cross-sections

Data compared with:

-a variety of MCs (4FS and 5FS)

 fixed order calculations (corrected for non-perturbative effects and different jet flavour definition):
 NLO and NNLO calculations

The measured p_T spectra are harder than predicted ones

Fixed-order calculations show discrepancy with data in the high $p_T(Z)$ region

Differential $Z + \ge 2$ b-jets cross-sections

 $\Delta \Phi_{bb}$: well described by 5FS NLO ME+PS MCs (MGaMC+Py8 FxFx and Sherpa),

 M_{bb} : none of the predictions in agreement with data in the full spectrum

Inclusive $Z + \ge 1$ c-jet cross-section

3FS Zcc NLO ME+PS MC does not describe the data

5FS NLO ME+PS MCs in agreement with data

Differential $Z + \ge 1$ c-jet cross-sections

3FS and 4 FS NLO ME+PS MCs largely underestimate data 5FS NLO ME+PS MCs and fixed-order NLO and NNLO calculations describe soft part of the spectra, but underestimate large p_T (larger effect for $p_T(Z)$ with fixed-order calculations)

Differential $Z + \ge 1$ c-jet cross-sections

 x_F sensitive to IC

Data compared to MGaMC+Py8 FxFx (5 FS NLO ME+PS MC) with several PDF sets testing different IC-models

Mismodelling at large x_F :

- PDFs with large IC contribution, such as CT14 BHPS2 (2.1% IC), agree at large x_F

- with more realistic PDF fits (NNPDF4.0 LHCb+EMC): only marginal improvement in last bins

Conclusions

- V+HF measurements at the LHC with Run-2 entered in the precision era thanks to large amount of data and improvements in HF- tagging performances
- 2 recent ATLAS measurement presented today: W+D, Z+b(b) and Z+c:

- W+D: precise measurement able to constraint PDFs fits, data consistent with predictions from various PDFs

- Z+b(b): 5FS NLO ME+PS MCs describe data within uncertainties, 4FS NLO ME+PS MCs underestimate Z+b data;

- Z+c: 3FS NLO ME+PS MCs underestimate data; no significant modelling dependence on IC on the measured observables

• Close interactions between experimentalists and theorists, including PDF fitter communities and MC developers, crucial in this kind of studies

BACKUP

W+D: MC predictions

Process	ME generator	QCD accuracy	ME PDF	PS generator	UE tune	HF decay		
W+jets (background modeling)								
W+ jets	Sherpa 2.2.11	0–2j@NLO+3–5j@LO	NNPDF3.0nnlo	Sherpa	Default	Sherpa		
W+ jets	AMC@NLO (CKKW-L)	0-4j@LO	NNPDF3.0nlo	Рутніа 8	A14	EvtGen		
W+ jets	AMC@NLO (FxFx)	0–3j@NLO	NNPDF3.1nnlo_luxqed	Рутніа 8	A14	EvtGen		
$W+D^{(*)}$ (signal modeling and theory predictions)								
W+D ^(*)	Sherpa 2.2.11	0–1j@NLO+2j@LO	NNPDF3.0nnlo	Sherpa	Default	EvtGen		
$W + D^{(*)}$	AMC@NLO (NLO)	NLO	NNPDF3.0nnlo	Рутніа 8	A14	EvtGen		
$W+D^{(*)}$	AMC@NLO (FxFx)	0–3j@NLO	NNPDF3.1nnlo_luxqed	Рутніа 8	A14	EvtGen		
Backgrounds								
Z + jets	Sherpa 2.2.11	0–2j@NLO+3–5j@LO	NNPDF3.0nnlo	Sherpa	Default	Sherpa		
tī	Powheg Box v2	NLO	NNPDF3.0nlo	Рутніа 8	A14	EvtGen		
Single-t, Wt	Powheg Box v2	NLO	NNPDF3.0nlo	Рутніа 8	A14	EvtGen		
Single-t, t-channel	Powheg Box v2	NLO	NNPDF3.0nlo	Рутніа 8	A14	EvtGen		
Single-t, s-channel	Powheg Box v2	NLO	NNPDF3.0nlo	Рутніа 8	A14	EvtGen		
tīV	AMC@NLO	NLO	NNPDF3.0nlo	Рутніа 8	A14	EvtGen		
Diboson fully leptonic	Sherpa 2.2.2	0-1j@NLO+2-3j@LO	NNPDF3.0nnlo	Sherpa	Default	Sherpa		
Diboson hadronic	Sherpa 2.2.1	0-1j@NLO+2-3j@LO	NNPDF3.0nnlo	Sherpa	Default	Sherpa		

Nominal signal MC: SHERPA

Alternative signal MC: MGAMC@NLO+PY8 with different setups (multi-jet merged with FxFx or CKKW and NLO with finite *c*-quark mass)

In all MC samples charmed hadron production fractions corrected to the world-average values

D^(*) object selection criteria

ريخ ا
360

Candidates K/π assigned based on	
the charge of the track:	

- D^+ : $N_{tracks} = 3$ tracks with total charge $= \pm 1$ with same charge assigned to π and the other to *K*
- D^0 : N_{tracks} = 2 with total charge = 0, matching with prompt π from D^{*+} decay

SV-based cuts applied to improve S/B

D(*) cuts:

 η cut to avoid ID edge with large amount of material and reduced reconstruction efficiency $p_{\rm T}$ upper cut to reject fake $D^{(*)}$ mesons at high momentum

$D^{(*)}$ cut	D^+ cut value	D^{*+} cut value $(D^0\pi \to (K\pi)\pi)$
N _{tracks} at SV	3	2
SV charge	±1	0
SV fit quality	$\chi^2 < 8$	$\chi^2 < 10$
Track $p_{\rm T}$	$p_{\mathrm{T}} > 800 \mathrm{MeV}$	$p_{\mathrm{T}} > 600 \mathrm{MeV}$
Track angular separation	$\Delta R < 0.6$	$\Delta R < 0.6$
Flight length	$L_{xy} > 1.1 \mathrm{mm} \left(p_{\mathrm{T}}(D^{+}) < 40 \mathrm{GeV} \right)$	$L_{\rm rm} > 0 \rm mm$
i iigiit iongui	$L_{xy} > 2.5 \mathrm{mm} \left(p_{\mathrm{T}}(D^+) \ge 40 \mathrm{GeV} \right)$	
SV impact parameter	$ d_0 < 1 \mathrm{mm}$	$ d_0 < 1 \mathrm{mm}$
SV 3D impact significance	$\sigma_{ m 3D} < 4.0$	$\sigma_{ m 3D} < 4.0$
Combinatorial background rejection	$\cos\theta^*(K) > -0.8$	—
Isolation	$\Sigma p_{\mathrm{T}_{\mathrm{tracks}}^{\Delta R < 0.4}} / p_{\mathrm{T}}(D^+) < 1.0$	$\Sigma p_{\mathrm{T}_{\mathrm{tracks}}^{\Delta R < 0.4}} / p_{\mathrm{T}}(D^{*+}) < 1.0$
$D_s^{\pm} \rightarrow \phi \pi^{\pm}$ rejection	$m(K^+K^-) > m_{\phi} - 8 $ MeV	_
D^{*+} background rejection	$m(K\pi\pi) - m(K\pi) > 160 \mathrm{MeV}$	—
D^0 mass	—	$ m_{K\pi} - m_{D^0} < 40 \mathrm{MeV}$
$\pi_{\text{slow}} p_{\text{T}}$		$p_{\mathrm{T}} > 500 \mathrm{MeV}$
$\pi_{\rm slow}$ angular separation	—	$\Delta R(\pi_{\rm slow},D^0) < 0.3$
$\pi_{ m slow} d_0$	—	$ d_0 < 1 \mathrm{mm}$
QCD background rejection	$\Delta R(D^+,\ell) > 0.3$	$\Delta R(D^{*+}, \ell) > 0.3$
$D^{(*)} p_{\mathrm{T}}$	$8 \text{GeV} < p_{\mathrm{T}}(D^+) < 150 \text{GeV}$	$8 \text{GeV} < p_{\mathrm{T}}(D^{*+}) < 150 \text{GeV}$
$D^{(*)} \eta$	$ \eta(D^+) < 2.2$	$ \eta(D^{*+}) < 2.2$
Invariant mass	$1.7 \mathrm{GeV} < m(D^+) < 2.2 \mathrm{GeV}$	$140 \mathrm{MeV} < m(D^{*+} - D^0) < 180 \mathrm{MeV}$

W+D: Migration matrix

• W⁺ and W⁻ inclusive cross-sections, cross-section ratios and the differential cross-sections also extracted from a likelihood fit

Cross-section extraction

• Fiducial phase-space close to detector level one: $1 e \text{ or } \mu \text{ with } p_T > 30 \text{ GeV } |\eta| < 2.5$

 $\geq 1 D^{(*)}$ with 8 GeV < $p_T > 8$ GeV $|\eta| < 2.2$

W+D: Uncertainties

	D^+ channel			D^{*+} channel		
Uncertainty [%]	$\sigma_{\rm fid}^{\rm OS-SS}(W^-+D^+)$	$\sigma_{\rm fid}^{\rm OS-SS}(W^+\!\!+\!D^-)$	$R_c^{\pm}(D^+)$	$\sigma_{\rm fid}^{\rm OS-SS}(W^-+D^{*+})$	$\sigma_{\rm fid}^{\rm OS-SS}(W^+\!\!+\!D^{*-})$	$R_c^{\pm}(D^{*+})$
SV reconstruction	3.0	2.9	0.5	2.3	2.3	0.4
Jets and $E_{\rm T}^{\rm miss}$	1.7	1.9	0.2	1.5	1.5	0.4
Luminosity	0.8	0.8	0.0	0.8	0.8	0.0
Muon reconstruction	0.6	0.7	0.3	0.7	0.7	0.3
Electron reconstruction	0.2	0.2	0.0	0.2	0.2	0.0
Multijet background	0.2	0.2	0.1	0.1	0.1	0.1
Signal modeling	2.1	2.1	0.1	1.2	1.2	0.0
Signal branching ratio	1.6	1.6	0.0	1.1	1.1	0.0
Background modeling	1.1	1.2	0.3	1.3	1.3	0.5
Finite size of MC samples	1.2	1.2	1.1	1.4	1.4	1.3
Data statistical uncertainty	0.5	0.5	0.7	0.7	0.7	1.0
Total	4.6	4.6	1.4	3.7	3.7	1.7

W+D differential cross-sections

All predictions with different PDFs have similar p_T^D shape \rightarrow observable sensible to MC modelling not to PDFs

$Z+ \ge 1$ b-jet, $Z+ \ge 2$ b-jet, $Z+ \ge 1$ c-jet: MC Predictions

		Generator/settings	Flav. scheme	PDF	LHAPDF ID	
		Main MC samples				
NLO ME+PS MCs		MGAMC+Py8 FxFx	5FS	NNPDF3.1 (NNLO) LuxQED	325100	
		Sherpa 2.2.11	5FS	NNPDF3.0 (NNLO)	303200	
with different F 58	\neg	Predictions to test various flavour schemes				
		MGAMC+Py8	5FS	NNPDF2.3 (NLO)	229800	
		MGAMC+Py8 Zbb	4FS	NNPDF3.1 (NLO) PCH	321500	
		MGAMC+Py8 Zcc	3FS	NNPDF3.1 (NLO) PCH	321300	
	C Fs	Intrinsic charm (IC) predictions				
				NNPDF4.0 (NNLO) PCH (no IC)	332100	
				NNPDF4.0 (NNLO)	331100	
Specific NLO ME+PS MC				NNPDF4.0 (NNLO) EMC+LHCbZc	_	
with different NNLO PDFs		MGAMC+Py8 FxFx	5FS	CT18 (NNLO) (no IC)	14000	
having different				CT18FC – CT18 BHPS3	14087	
				CT18FC – CT18 MCM-E	14093	
				CT14 (NNLO) (no IC)	13000	
				CT14 (NNLO)IC – BHPS1	13082	
				CT14 (NNLO)IC – BHPS2	13083	

$Z+ \ge 1$ b-jet, $Z+ \ge 2$ b-jet, $Z+ \ge 1$ c-jet: Fixed order calculations

Corrections from parton-level to particle level to allow comparison with unfolded data:

- Corrections for non-perturbative effects :

bin-by-bin correction with a MC with hadronization and underline event switched on/off

- Corrections for different jet flavour definition:
 - FOs use **flavour-dressing algorithm** (Phys. Rev. Lett. 130 (2023) 161901) for the assessment of the flavour of the (anti-*kt* R= 0.4) IRC safe algorithm
 - -In the analysis used a cone-base algorithm:
 - b-jet= jet within $\Delta R=0.3$ of at least a b-hadron with $p_T > 5$ GeV. If a b-hadron matches two jets, only the closest is taken c-jet = jet not classified as b-jets, within $\Delta R=0.3$ of at least one c- hadron with $p_T > 5$ GeV.
 - light-jet = jet not classified as a b- or a c-jet
 - bin-by-bin corrections done with MGAMC+PY8 FXFX (ratio of results with cone-base/flavour dress), difference with SHERPA taken as systematic

$Z+ \ge 2$ b-jets : Migration matrix

• Bin-by-bin unfolding for inclusive cross-sections and Bayesian unfolding for differential cross-sections

Cross-section extraction

Fiducial phase-space close to detector level one:

 e or μ with p_T> 27 GeV |η| < 2.5 , 76GeV < m₁₁ < 106GeV
 b-jets and c-jets with p_T>20 GeV |y| < 2.5
 Z+ ≥ 1 b-jet, or ≥Z+ 2 b- jets or Z+ ≥ 1 c-jets

Source of uncertainty	$Z(\to \ell\ell) + \ge 1 \text{ b-jet}$	$Z(\rightarrow \ell\ell) + \geq 2 b$ -jets	$Z(\to \ell\ell) + \ge 1 \text{ c-jet}$	
	[%]	[%]		$\begin{array}{c} \Box & AILAS \\ c \\ $
Flavour tagging	3.6	5.7	10.3	$\begin{array}{c} \bigcirc & \square & \square & \square & \square \\ \bigcirc & \square & \square & \square & \square & \square \\ \bigcirc & \square \\ \bigcirc & \square \\ \hline & \square \\ \hline & \square &$
Jet	2.4	4.3	6.5	O Pile-up Uther backgrounds
Lepton	0.3	0.3	0.4	0.25 Unfolding Z+jets background
$E_{ m T}^{ m miss}$	0.4	0.5	0.3	
Z+jets background	0.6	1.5	1.6	ŚŚ
Top background	0.1	0.3	<0.1	
Other backgrounds	< 0.1	0.2	0.1	
Pile-up	0.6	0.6	0.2	
Unfolding	3.3	5.8	5.0	
Luminosity	0.8	0.9	0.7	0 8 10 20 30 10 ² 2×10 ² 10 ³
Total [%]	5.6	9.4	13.2	p _T (Z) [GeV]

Differential $Z + \ge 1$ c-jet measurements

- Central Z : |y|<1.2 Forward Z: |y|>1.2
- Large reduction of systematics in the ratio (~8%)
- Data compared to MGaMC+Py8 FxFx (5 FS NLO ME+PS MC) with several PDF sets testing different IC-models:

similar trend by all IC-models \rightarrow The measurement has small sensitivity to IC

