

Overview of EIC and its ePIC detector

Liliana Teodorescu on behalf of the ePIC Coll.

Outline

Overview of

- EIC scientific program
- EIC accelerator
- PIC detector

https://www.bnl.gov/eic/

Why EIC? - For the "ultimate" QCD exploration

Fundamentals of the EIC scientific program have been developed for more than 20 years

"We recommend the expeditious completion of the EIC as the highest priority for facility construction."

EICUG – EIC User group

EIC scientific program has been developed by a large international community \rightarrow EIC User group (EICUG)

https://eicug.org/

EIC Yellow Report

Nucl. Phys. A 1026 (2022) 122447 Defines

- scientific goals
- collider and detector requirements
- initial detector concepts

Fundamental questions

The fundamental questions aimed to be answered by the core program of the EIC project:

- How do the mass and the spin of the nucleons emerge?
- How are the quarks and gluons distributed in space and momentum inside the nucleon?
- How do the colour charged quarks and gluons, and the colourless jets interact with a nuclear medium? How do hadrons emerge? What is the nature of confinement? How do the quark-gluon interactions create nuclear binding?
- What happens to the *gluon density* in nuclei?
 Does it *saturate* at high energy?
 Does it give rise to a *new phase of matter* in nucleons/nuclei?

Processes (DIS) to explore the answers

Neutral-current Inclusive	DIS:
$e + p/A \longrightarrow e' + X;$	

Char	ged-current	Inclusive	DIS:
	e + p/A —	$\rightarrow \nu + X;$	

Semi-inclusive DIS: $e + p/A \longrightarrow e' + h^{\pm,0} + X,$

Exclusive DIS: $e + p/A \longrightarrow e' + p'/A' + \gamma/h^{\pm,0}/VM,$

Topics vs processes vs measurements (not exhaustive)

EIC Yellow Report, Nuclear Physics A 1026 (2022) 122447

Processes	Inclusivo	Somi Inclusivo	Jets,	Evolucivo	Diffractive,
Topics	menusive	Semi-merusive	Heavy Quarks	Exclusive	Forward Tagging
Global properties	ingl SF	h, hh	jet, Q	excl. $\mathbf{Q} \overline{\mathbf{Q}}$	incl. diffraction,
& parton structure	mer. or				tagged DIS on D/He
Multidimonsional			jet, di-jet,	DVCS,	
Imaging		h	jet+h,	DVMP,	
Imaging			$\mathbf{Q}, \mathbf{Q} \overline{\mathbf{Q}}$	elast. scattering	
Nucleus	incl. SF	h, hh	$egin{array}{l} { m jet, \ di-jet, \ Q, Q \overline{Q} \end{array}$	coh. VM,	diffr. SF, incoh. VM,
				di-jet, h, hh,	di-jet, h, hh,
				D/He FF	nucl. fragments
Hadronization		$\mathbf{h}, \mathbf{h}\mathbf{h},$	int $0, \overline{0}$		
		$_{\rm jet+h}$	ુકા, હ, હહ		
Other fields	incl. SF with e^+ ,	charged curr. DIS,		elast	~diffr
	$\sigma^{ m tot}_{\gamma A}$	$\sigma_{\gamma A o h X}$		$\sigma_{\gamma A}$	$\sigma_{\gamma A}$

SF – structure function VM – vector meson Q – heavy quark $Q\overline{Q}$ - quarkonium

FF – form factor H – identified hadron

Global properties and parton structure :

- nucleon spin, nucleon mass,
- PDF (Parton Distribution Function), structure of mesons

Multidimentional imaging:

- position space: form factors, generelised parton distributions (GPDs)
- 3D momentum space: transverse momentum dependent parton distributions (TMDs)

Processes	Inclusive	Semi-Inclusive	Jets, Heavy Overla	Exclusive	Diffractive,
Clobal properties			neavy Quarks		incl diffraction
& parton structure	incl. SF	h, hh	jet, Q	$excl. \mathbf{Q}\mathbf{Q}$	tagged DIS on D/He
Multidimonsional			jet, di-jet,	DVCS,	
Imaging		h	$_{jet+h}$,	DVMP,	
			$\mathbf{Q},\mathbf{Q}\overline{\mathbf{Q}}$	elast. scattering	
Nucleus	incl. SF	h, hh	$egin{array}{l} { m jet, \ di-jet, \ Q, \ Q \ \overline{Q} \end{array}$	coh. VM, di-jet, h, hh, D/He FF	diffr. SF, incoh. VM, di-jet, h, hh, nucl. fragments
Hadronization		f h, hh, jet+h	${\rm jet}, Q, Q\overline{Q}$,	
Other fields	incl. SF with e^+ , $\sigma_{\gamma A}^{\text{tot}}$	charged curr. DIS, $\sigma_{\gamma A \to h X}$		$\sigma^{ m elast}_{\gamma A}$	$\sigma^{ m diffr}_{\gamma A}$

Nucleus (as a QCD lab)

- the effect of the binding of nucleons on nuclear parton distributions,
- the space and momentum distribution of quarks and gluons in nuclei
- fluctuations of the density of quarks and gluons in nuclei

Hadronization studies

- hadronization in vacuum
- production for identified hadron species, production of quarkonia
- potential new particle production mechanisms

Other fields : neutrino, cosmic ray, HEP

- opportunities for electroweak (EW) and beyond the standard model (BSM) physic

EIC performance requirements

- large centre-of-mass energy \sqrt{s} : 29 140 GeV
 - map the nucleon and nuclei structure in a wide kinematic range in x and Q²
- polarized electron, proton and light ion beams (time-averaged polarization ~ 70%)
 - access to spin structure of nucleons and nuclei
 - access to the 3D spatial and momentum structure of the nucleon
- wide range of nuclear beams: from d to U
 - \checkmark accessing the highest gluon densities \rightarrow saturation
 - study quark and gluon interaction with the nuclear medium
- high luminosity 10^{33} - 10^{34} cm⁻²s⁻¹ and integrated 10-100fb⁻¹/year
 - map the 3D spatial and momentum structure of nucleons and nuclei
 - access to rare probes

 \checkmark

 \checkmark

- large detector forward acceptance (0.2 1.3 GeV)
 - spatial imaging of nucleons and nuclei
- good background conditions
- possibility to implement a second interaction region

Kinematic range of EIC

EIC Yellow Report, Nuclear Physics A 1026 (2022) 122447

x-Q² range covered by the EIC (yellow) compared with existing data for polarized e/μ +p, and p-p

x-Q² range for e⁺A collisions for ions heavier than iron (yellow) compared to existing world data.

The diagonal lines in each plot represent lines of constant inelasticity y

The EIC provides

- overlap with existing data
- access to new regions in both x and Q²
- the low-x region, provides important information about the gluondominated regime.

EIC implementation

A joint endeavour by Thomas Jefferson National Accelerator Facility (Jlab) and Brookhaven National Lab (BNL).

Jlab

From RHIC

Relativistic Heavy Ion Collider (RHIC) Electron Ion Collider (EIC) First accelerator capable of colliding Tunnels and infrastructure provides heavy ions 2 superconducting storage rings The only accelerator capable of \checkmark develop for **EIC** polarization needs colliding high energy (60%) (novel polarized beams) polarised protons provides Can accelerate a wide range of ions \checkmark lon beams needed from protons to uranium provides Up to 2 interaction regions Has 2 detectors Operation ends in 2025 Operation early 2030s

From RHIC

to EIC

Use from RHIC

- Polarized ion/proton source
- Hadron injection and initial acceleration systems: Linac (200 MeV), Booster (1.5 GeV), AGS (25 GeV)

The two storage rings – become the EIC Hadron Storage Ring (41, 100 to 275 GeV)
 Add (new)

- ✓ Polarized electron source
- ✓ Electron Pre-Injector (3 GeV)
- Electron Rapid Cycling Synchrotron (3 GeV top energy)
- ✓ Electron Storage Ring (5-18 GeV)

Interaction Region - IP6 for the first detector (ePIC)

- option for the second detector at IP8

13

Interaction Region (at IP6)

- 25 mrad crossing angle
- Crab cavity systems to create the bunch tilting and restore the head-on collision
- Small β* for high luminosity => quads close to IP
- Bunch crossing rate: ~ 10 ns/98.5
 MHz
- No magnets within 4.5 / +5 m from IP for detector
- Large detector acceptance
- Space for far-forward and farbackword detectors

EIC Accelerator Collaboration

in formation (May 2024) https://indico.jlab.org/event/834/

Detector requirements

Distribution of hadrons & scattered lepton in x – Q^2 plane & detector pseudorapidity μ

Asymmetric beam energies => asymmetric detector

- Physics requires access to full
 x Q²plane at different CM energy
 ⇒ Reconstruct events over
 a large range η in the central region with
 - high precision low mass tracking
 - good e/h separation critical for scattered electron ID
 - High performance PID for good separation of e, p, K, π on track level
 - Far forward and backward coverage => ancillary detectors integrated in the IR

ePIC Detector and Collaboration

ePIC: electron Proton/Ion Collider

Collaboration created in July 2022 to implement the Yellow Report requirements

- ✓ has over 850 collaborators
- ✓ from over 175 institutes
- ✓ in 26 countries

Full ePIC detector

Far-Forward detectors

Far-Backward detectors

- Luminosity monitor luminosity precision less 1%
- 2 Low-Q² electron taggers clean signal for 10⁻³ < Q²<10⁻¹ (GeV²)

Detector	Acceptance	Particles
ZDC	$\theta < 5.5 mrad (\eta > 6)$	Neutrons, photons
Roman pots (2 stations)	$0.0 < \theta < 5.0$ mrad ($\eta > 6$)	Scattered protons, light nuclei
Off- Momentum Detectors (2 stations)	$\theta < 5.0 mrad$ ($\eta > 6$)	Charged particles from decays
B0 Detector	$5.5 < \theta < 20.0$ mrad (4.6 < η < 6)	Charged particles, tagged photons

Central Detector

Silicon Vertex Tracker (SVT) -Monolithic Active Pixel Sensor (MAPS)

- ✓ based on ALICE ITS3 sensors
- \checkmark ultra thin, 20 µm pixels
- ✓ low power consumption (<20 mW/cm²)
- ✓ Iow material budget (0.05-0.55% X/X0) per layer
- ✓ 3 inner barrels: ITS3 curved wafer-scale sensor, 2 outer barrels: ITS3 based Large Area Sensors (EIC-LAS), stave based support structure
- ✓ 5 endcap disks (forward/backward), EIC-LAS,

Micro Pattern Gas Detectors (MPGD):

- Resolution: 10 ns, 150 um,
- ✓ 2 µRwell endcaps
- Outer µRwell planar layer + Barrel ECal layer
- Inner Micromegas barrel

AC-coupled Low Gain Avalanche Diode (AC-LGAD)

Resolution: ~30 ps, 30 um

ToF detectors for PID at low p_T + time and spatial info for tracking

- ✓ Barrel: 0.05 x 1 cm strip,
- Endcap: 0.05 x 0.05 cm pixel

- Proximity gap (~40 cm)
- Sensors: High Rate Picosecond Photon Detectors (HRPPD) (provides also reference time for TOF)
- \checkmark π/K separation at 3 σ up to 10 Ge
- e/π separation at 3σ up to 2.5 G

AC-LGAD based TOF:

- ✓ t~30 ps
- Accurate space point for tracking ~30 cm
- Forward disk and central barrel

Electromagnetic Calorimeter

Depth: ~17.1 X0 at eta=0

 \checkmark

Depth: ~23 X0

Hadronic Calorimeter

- Refurbished for EIC
- Minor radiation damage replace SiPMs
- Upgrade electronics to HGCROC
- Reading out each tile individually

Streaming DAQ

Triggerless streaming architecture => more flexibility for physics

- ✓ All collision data digitized but aggressively zero suppressed at FEB
- Low / zero deadtime
- Collision data flow is independent -> no global latency requirements
- Event selection can be based upon full data from all detectors (in real time, or later)
- ✓ Data volume is reduced as much as possible at each stage

Current schedule

-

https://www.bnl.gov/eic/rhic-eic-comparison.php

Summary

EIC & ePIC

- powerful and flexible facility under development
- challenges and excitement ahead for both
 - instrumentation development
 - ✓ wide frontier physics scope

