\bullet \bullet $\bullet\bullet$

INSTRUMENTATION TECHNOLOGIES

 \bullet $\bullet\bullet$ $\bullet\bullet$

 $\bullet\bullet$

 $\bullet\hspace{1mm}\bullet$

 $\bullet\bullet$ \bullet $\bullet\bullet$

. **.** .

LIBERA

Low-Level Radio Frequency for Medical **Acclerators**

Phani Deep Meruga July 18th, 2024

WWW.I-TECH.SI

Outline:

- Introduction to Instrumentation Technologies
- **Cancer Therapy Introduction**
- Hadron Accelerators
- Introduction to Low Level Radio Frequency
- LLRF Specifications
- LIBERA LLRF
- X-Band and it's challenges

INSTRUMENTATION TECHNOLOGIES

Company Business Units

SOLUTIONS FOR INDUSTRIES

Beam-diagnostics-and-control instrumentation

- Particle Accelerators
- Nuclear Research Reactors
- Nuclear Fusion

Custom data-acquisition products

- Transportation Industry
- Energy Industry
- Test and Measurement

Open-source generalpurpose lab devices

- Universities
- Research
- Industry

> 6,000 instruments sold to **> 80 laboratories** worldwide

Asia Bhabha Atomic Research Center Chinan Biomedical Technology **HiSOR HUST IBS-RISP** IHEP-BEPC II, ADS, CSNS IMP-CAS-C-ADS, LEAF, SSC-LINAC, CSR, **HIRFL** IMS-UVSOR Inter University Accelerator Centre **ISSP** KEK-PF, PF-AR, LINAC, SUPER B, J-PARC, CERL Nagoya University-Aichi Synchrotron NewRT Medical Systems NSRRC-TLS, TPS PAL-PLS II, XFEL ITF Peking University RRCAT-INDUS, INDUS II SACLA-SPring-8 SINAP-SSRF **SJTU SLRI** Tokamak Energy Tsinghua University USTC, NSRL-HLS, HLSII Australia Australian Synchrotron Europe AVO-ADAM-LIGHT CANDLE CEA CELLS-ALBA **CERN** CNAODESY-PETRA III, FLASH, DESY XFEL, **DORIS III** Diamond Light Source ELI - Extreme Light Infrastructure ESRF-ESRF-EBS Forschungszentrum Jülich-COSY Fritz Haber Institute of the MPS ABTLuS-LNLS **GANIL**

GSI-FAIR Helmholtz-Zentrum Berlin BESSY II Helmholtz-Zentrum Dresden-Rossendorf $-FIBF$ IBPT-KARA **IJS** INFN-Daphne, ELI-NP, SPARC **IPNO ISA-ASTRID II** Jagiellonian University-SOLARIS JINR-NICA LAL-THOM-X Lund University-MAX III, MAX IV MedAustron Physics Institute of the University of Bonn PSI-SLS, SwissFEL Research Instruments RRC Kurchatov Institute-SIBERIA II ScandiNova SCK-CEN SDU-TARLA SESAME Sincrotrone Trieste-Elettra, FERMI SOLEIL Synchrotron STFC ASTeC-EMMA, CLARA University of Twente North America

ANL-APS, APS-U

Best Medical International BNL-ERL, NSLS II, X-RAY ring Canadian Light Source, CLS Cornell University-CHESS, CESR Idaho National Laboratory LANL-LANSCE LBNL-ALS Michigan State University-FRIB Northwestern University NUSANO Oak Ridge National Laboratory RadiaBeam SLAC-LCLS, SPEAR South America

Radiation therapy

❑ Cancer treatment through ionizing radiation is acting on cancer cells DNA.

- ❑ Radiation therapy methods:
	- Electrons:

Limited effects on surface

• Photons (x-rays):

Spread among different depths

- Protons (or heavy ions, e.g. carbon):
	- ➢ Very focused with depth (Bragg peak).
	- ➢ Penetrate deeply (depth depends on beam energy).

Particle Therapy advantages

- High energy protons are applied to tumor tissue.
- Proton energy is increased through particle accelerators.
- Proton therapy advantages:
	- ✓ Radiation dose selectively deposited at beam energy dependent depth (70 MeV to 250 MeV).
	- ✓ Beam transversally more focused, less scattering (protons are heavy).
	- \checkmark Protons reach tumors deeply in the body.
	- ✓ Minimized side-effects on surrounding tissue.

Hadron accelerators

Protons are accelerated by applying electro-magnetic field within RF cavities or dees.

- ❑ Circular machines: cyclotrons and synchrotrons
	- beam energy is increased over many cycles and require accelerating RF frequency and deflecting magnetic field to be corrected accordingly. Cyclotron extract at full energy; degrader are used to reduce it. (radiation issues)
	- RF frequency ramping process may have implication on cavity tuning and transverse beam position control
- ❑ Linear machines: LINACs
	- More flexible in controlling beam energy and less complex to control
	- Dynamic control of beam energy (tracking patient movement)
	- More efficient as protons are accelerated to the required energy

Proton acceleration

- Precise synchronization RF cavity field vs. Beam
- Cascaded RF stations: beam dynamics effects may spoil beam quality
- Sources of errors:
	- o High power amplifier response

INSTRIJMENTATION

TECHNOLOGIES

- o Cavity resonant frequency drifts (thermal expansion)
- o Amplifier working point (beam energy modulation)

 0.2

 0.4

Time [ns]

 0.6

Bunch #3

 0.8

There is the need to actively control cavity field amplitude and phase!

Introduction to Low Level Radio Frequency (I)

- Subsystem of Radio Frequency (RF) system.
- Maintain the stability and control of frequency, phase and amplitude.
- LLRF starts by measuring the characteristics of the RF signal. Detectors sample the amplitude and phase of the signal.
- The measured signal is then compared to a reference signal.

Introduction to Low Level Radio Frequency (II)

- **station (cavity)** Deviation between the measured signal and the reference compensated by feedback control system.
	- This system brings the signal back into alignment with the reference.
	- This feedback loop is continuous and rapid, to ensure the RF signal stays within the desired parameters.
	- Operates in real time with submicrosecond response times.

Introduction to Low Level Radio Frequency (III)

INSTRUMENTATION

TECHNOLOGIES

LLRF system purpose (continued):

- Measure the cavity resonant frequency and control the cavity tuning
- Trigger the machine protection system in case of unexpected signals in the cavity or in the RF distribution.

 -100

Important LLRF specifications

Physical interfaces:

- Number of RF inputs (8 or 16 or more) and expected signal levels
- Number of RF outputs (1 or 2) and signal levels
- Specific trigger signals (RF pulse, Beam pulse, Modulator signals)
- Machine Protection System interfaces (Interlock)

Important LLRF specifications

Physical interfaces:

- Number of RF inputs (8 or 16 or more) and expected signal levels
- Number of RF outputs (1 or 2) and signal levels
- Specific trigger signals (RF pulse, Beam pulse, Modulator signals)
- Machine Protection System interfaces (Interlock)

Machine specifications:

- RF frequency
- Type of cavity (NC, SC)
- Pulsed (pulse duration, injection frequency) vs CW
- Cavity tuning requirements
- Control system interface

The higher the frequency, the smaller is the size of the RF components and RF structures **-> more compact machines**!

Important LLRF specifications

Physical interfaces:

- Number of RF inputs (8 or 16 or more) and expected signal levels
- Number of RF outputs (1 or 2) and signal levels
- Specific trigger signals (RF pulse, Beam pulse, Modulator signals)
- Machine Protection System interfaces (Interlock)

Machine specifications:

- RF frequency
- Type of cavity (NC, SC)
- Pulsed (pulse duration, injection frequency) vs CW
- Cavity tuning requirements
- Control system interface

Performance specifications:

- Front-end and Back-end: Bandwidth, sampling rate, added noise
- Short term amplitude and phase stability
- Long term amplitude and phase stability

X-Band Low Level Radio Frequency

- Development of accelerator technology at higher frequencies up to X-Band allows high accelerating gradients [MV/m] and shorter accelerating structures (compact machines).
- Easier to install in Medical facilities (eg:- hospitals).
- Challenge of controlling RF parameters (amplitude and phase) at high frequencies and for very short pulses (100ns).
- LLRF system stability influenced by temperature drifts at higher RF frequencies.
- Instrumentation Technoloiges is currently developing a commericial LLRF system working in X-band.

Contact info:

Phani Deep Meruga RF Engineer at Libera phanideep.meruga@i-tech.si

Learn about student opportunities at www.i-tech.si/careers/students/

