Recap of MAP 3 TeV lattice and IR design studies

Content:

- Overview of lattice design challenges
- 3 TeV c.o.m.collider
- Summary

Y. Alexahin and E. Gianfelice-Wendt (Fermilab) MDI Workshop

March 11, 2024

1/14

Lattice Challenges

Assuming we are able to accelerate enough muons to collider energy, the design of the collider ring itself is *not trivial* either.

Beam size

$$\sigma = \sqrt{eta \epsilon}$$

For a magnet free region

2/14

 β at IP $\beta(s) = \beta^* + \frac{s^2}{\beta^*}$

 β^* must be small for maximizing the luminosity!

What limits the free space available, for the experiments?

First quadrupole lens at $s = s^*$:

For a given β^*

- s^* must be small;
- K_q becomes large.

3/14

In this design we fixed ± 6 m space for the experiment.

- Large transverse emittance ($\epsilon^n \approx 25 \mu m$).
- Low β^* (few mm):

4/14

- Strong IR quadrupoles at large β :
 - * large chromaticity;
 - * large sensitivity to their misalignments and field errors.
- Small circumference, particularly important for short living particles!
- High density: $N \approx 2 \times 10^{12}$ per bunch.
 - Protection of magnets and detectors.
 - Neutrinos hotspots limit to ${\approx}0.5$ m field-free regions at beam energy ${\approx}1.5$ TeV
- $\sigma_\ell \leq eta^*$ to avoid *hour-glass* effect, detrimental for the luminosity.
- Expected large momentum spread (dp/ppprox 0.1%) requires
 - small $|\alpha_p|$ ($\approx 1 \times 10^{-5}$) over the momentum range to achieve short bunches with reasonable RF voltage;
 - sufficient Dynamic Aperture $(\gtrsim 3\sigma)$ in presence of strong sextupoles and large dp/p.

IR chromaticity correction

The "usual" global chromaticity correction using sextupoles in the arcs was unsatisfactory: IR chromaticity must be corrected locally.

Montague chromatic functions

$$W_z\equiv \sqrt{A_z^2+B_z^2}$$

$$A_{z} \equiv \frac{\partial \alpha_{z}^{(0)}}{\partial \delta_{p}} - \alpha_{z}^{(0)} B_{z} \qquad B_{z} \equiv \frac{1}{\beta_{z}^{(0)}} \frac{\partial \beta_{z}}{\partial \delta_{p}} \qquad (z = x/y)$$

$$egin{aligned} rac{dA_z}{ds} &= 2B_zrac{d\mu_z^{(0)}}{ds} - eta_z^{(0)}k & ext{and} & rac{dB_z}{ds} &= -2A_zrac{d\mu_z^{(0)}}{ds} \ k &\equiv egin{cases} +(K_1 - D_xK_2) & (ext{hor.}) & K_1 &\equiv ext{quad. strength} \ -(K_1 - D_xK_2) & (ext{vert.}) & K_2 &\equiv ext{sext. strength} \end{aligned}$$

- $A_z(s)$ becomes non-zero when going from the IP $(A_z=B_z=0)$ through the IR quads.
- $B_z(s){=}0$ as long as $d\mu_z^{(0)}/ds{=}0.$

5/14

A sextupole close to the FF quads (large $eta_z o d\mu_z^{(0)}/ds$ =0) corrects A_z and keeps B_z =0.

• horizontal dispersion must be generated in the IR

Second order chromaticity

6/14

$$\xi_{z}^{(2)} = \frac{1}{8\pi} \int_{0}^{C} ds \left(-kB_{z} \pm 2K_{2} \frac{dD_{x}^{(0)}}{d\delta_{p}}\right) \beta_{z}^{(0)} - \xi_{z}^{(1)}$$

ightarrow It may be necessary to correct $dD_x^{(0)}/d\delta_p$, in addition to $B_{x,y}$.

- It is convenient to focus first in the horizontal plane $(\hat{eta}_y \gg \hat{eta}_x)$.
 - W_y is first corrected by a single sextupole at $\Delta \mu_y \approx 0$ from IP and very small β_x (for <u>normal</u> sextupole it ensures that the effect on detuning with amplitude and resonance driving terms are small, a consequence of $H=ax^3 - 3axy^2$).
 - W_x is corrected with one sextupole at $\Delta \mu_x {=} m \pi/2$ from IP and $eta_x \gg eta_y$;
 - * a "twin" sextupole at -I reinforces the correction and cancels the aberrations.
- 1st order dispersion can be corrected by sextupoles at a low $\beta_{x,y}$ locations.
- D_x at all sextupoles should be as large as possible.

3 TeV c.o.m. case

7/14

2 IR designs, D-F-D triplet and F-D-F-D quadruplet, with $\beta^*=5$ mm and $s^*=6$ m.

- Quads in cyan include a dipole component.
- Space between quads for tungsten masks. Aperture: $\pm 5\sigma$ ± 1.5 cm for absorbers.
- IR chromaticity correction "à la Montague".

Magnet data for the FF triplet							
	QD1	QD2	QF3	QF4-6	QD7	QD8-9	B1
Aperture [mm]	80	100	124	140	160	180	180
Gradient [T/m]	-250	-200	161	144	125	-90	0
$B_{\operatorname{dip}}[T]$	0	0	0	0	0	2	8
Length [m]	1.85	1.4	2.0	1.7	2.0	1.75	5.8

л л 11. 1.1.1.1.1

Magnet data for the FF quadruplet

	Q1	Q2	Q3	Q4	Q5	Q6	В
Aperture [mm]	90	110	130	150	150	150	150
Gradient [T/m]	267	218	-154	-133	129	-128	0
$B_{\operatorname{dip}}[T]$	0	0	2	2	0	2	6.9
Length [m]	1.6	1.85	1.8	1.96	2.3	2.85	5.9

Nb₃Sn technology @4.5 K (1.9 K). Design optimized by ROXIE.

8/14

(V. V. Kashikhin, A. V. Zlobin)

Flexible mometum compaction arc cell

- Neutrinos hot spots limit length of straight sections to about 0.5 m
 → long arc quadrupoles replaced by combined function magnets.
- Large (positive) IR contribution to α_p must be compensated in the arcs.
- α_p must be small over the momentum range.

• Orthogonal chromaticity correction.

9/14

- Phase advance and number of cells adjusted for canceling 3rd order resonance driving terms.
- Quads and sextupole in the middle control $lpha_p$ and $dlpha_p/d\delta_p$

	QDA1	QDA3	QFA2	QFA4	BEA1	BEA2	BEA3
Gradient [T/m]	-31	-35	85	85	10.2	10.2	10.2
$B_{\operatorname{dip}}[T]$	8.9	8.9	7.9	7.9	10.4	10.4	10.4
Length [m]	3.34	5	4	4	6	6	5

Figure 4: Bending dipole (left) and combined-function quadrupoles with the dipole coil inside (center) and outside (right) of the main quadrupole coil. The color shades represent the current directions in the coils.

10/14

(V. V. Kashikhin, A. V. Zlobin)

Matching Section

The matching section used for

- matching the IR to the arc cell;
- adjusting β^* (pprox 3 mm to 3 cm), w/o changing the IR and the arc, for
 - coping with possible larger than expected emittance
 - commissioning purposes.
- It may host also
 - RF cavities

11/14

- Injection elements
- halo removal, if studies show it is needed

It must not include long straights: it is not easy to change the quads without affecting the dispersion... A dipole chicane was introduced, but this solution requires moving the chicane dipoles when β^* is changed.

12/14

 δ_p

 δ_p

	Higgs Factory	High Energy Collider			
Beam energy [TeV]	0.063	0.75	1.5	3	
${\cal C}$ [Km]	0.3	2.5	4.3	6.3	
IP's #	1	2	2	2	
$oldsymbol{eta}^{*}$ [cm]	1.7	1	0.5	1	
σ_ℓ [cm]	6.3	1	0.5	1	
$lpha_p$	0.079	-1.3×10^{-5}	-0.5×10^{-5}	-1.2×10^{-3}	
$\epsilon_{\perp}^{N}~[\mu$ m]	300	25	25	25	
$\sigma_p/p~[\%]$	0.004	0.1	0.1	0.1	
n_b	1	1	1	1	
N_{μ}	4×10 ¹²	2×10^{12}	2×10^{12}	2×10^{12}	
$f_{rf}~[{\sf GHz}]$	0.2	1.3	1.3	-	
$V_{rf}~[{\sf MV}]$	0.1	12	50	-	
Repetition rate [Hz]	15	15	12	15	
Average $\mathcal{L}[cm^{-2}sec^{-1}]$	8×10^{31}	1.25×10^{34}	4.6×10^{34}	7.1×10^{34}	

ifm

13/14

Design parameters

Summary

14/14

Some of the challenges related to the design of a Muon Collider and possible approaches for overcoming them have been shown.

- The 3 TeV collider conceptual designs is relatively mature. The related studies on magnets, energy deposition and beam-beam effects haven't pointed out to showstoppers.
 - The design assumed fields compatible with already available technology.
- The effect of misalignments, field errors and fringe fields has been not studied for the 3 TeV case.
 - IR quads fringe field studies by V. Kapin have shown a reduction of the DA in the 1.5 TeV collider Fermilab design.

