

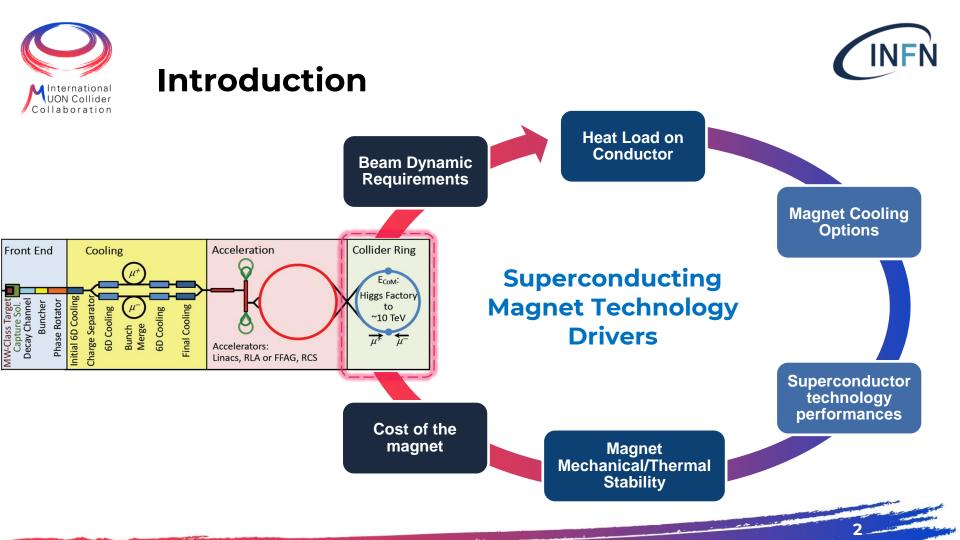
Magnet Technologies for Final Focusing Region

IMCC and MuCol MDI workshop 2024

<u>S. Mariotto^{1,2}</u>, D.Novelli^{3,4}, A. Bersani³, B. Caiffi³, A. Pampaloni³ F. Mariani⁴, L. Alfonso³, S. Farinon³, T. Salmi⁵, L. Bottura⁶

¹University Of Milan, ²INFN-Milano, ³INFN-Genova, ⁴La Sapienza-Rome, ⁵University of Tampere, ⁶CERN

Requirements for the magnet design


Assumptions and technology parameters

Magnet performances

- 1. Dipoles
- 2. Quadrupoles

Conclusions

Scope of this presentation:

- **Feedback** on magnet performances and feasible working points for the next design iteration
- > Trigger of **discussion** on which **assumptions and requirements** are critical or not

More on the following presentations:

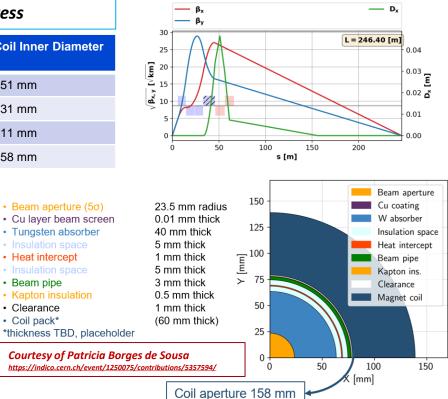
Wednesday 13th March 2024 - 30/7-018 - Kjell Johnsen Auditorium (CERN)

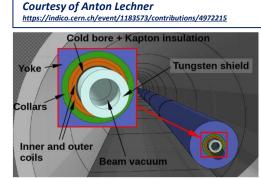
- "Collider Magnets Study" D. Novelli, 09:40-10:00, <u>https://indi.to/5kwCc</u>
- "Magnet plan collider" B. Caiffi,11:10-11:30, <u>https://indi.to/nm6NN</u>

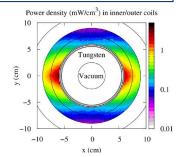
Thursday 14th March 2024 - 30/7-018 - Kjell Johnsen Auditorium (CERN)

"Magnet Limitations for Muon Collider Rings" – D. Novelli, 10:30 - 11:00, <u>https://indi.to/MXn2q</u>

Friday 15th March 2024 - 503/1-001 - Council Chamber (CERN)


"Highlight 1", D. Novelli, 09:40-10:00, <u>https://indi.to/MvDMZ</u>

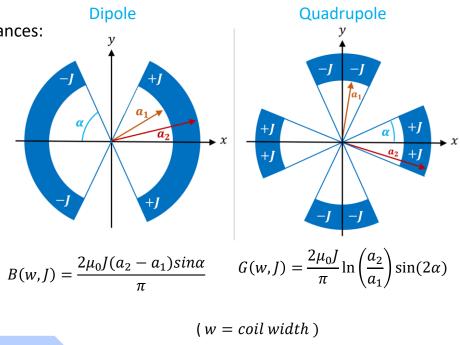



Requirements for the IR Magnets

Courtesy of Kyriacos Skoufaris V0.7 Work in Progress https://indico.cern.ch/event/1351046/contributions/5687387 Magnet Type **Coil Inner Diameter** Performance **Shielding Outer Diameter** $2 \cdot (5\sigma + 4[cm])$ Quadrupole $G_1 \approx \pm 300 T/m$ 120 mm 151 mm Quadrupole $G_1 \approx \pm 110 T/m$ 300 mm 331 mm Dipole/Quad $B_d \approx 8 T_1 G_1 \approx \pm 100 T/m$ 280 mm 311 mm Dipole $B_d \approx 16 T$ 120 mm 158 mm

General Assumption

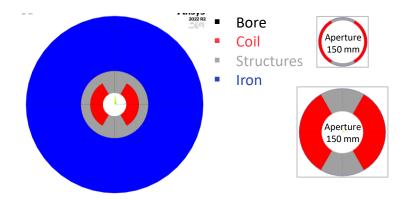
Analytical evaluation of dipole and quadrupole performances: simplified design in section coil approximation: (α is 60° for the dipole and 30° for the quadrupole)


Material	Temperature		Configuration	
NbTi	1.9 <i>K</i>		3 TeV	
Nb ₃ Sn	4.5 <i>K</i>		3-10 TeV	
ReBCO	4.5 <i>K</i>	20 K	10 TeV	

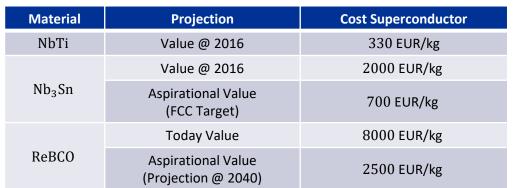
Scope of the analysis

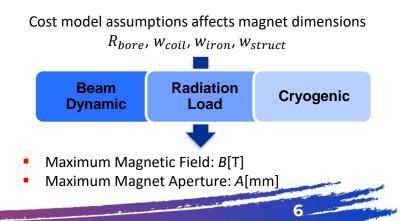
Plots of the Magnet Aperture (A) – Bore Field (B) phase space allowed region

Limitations:



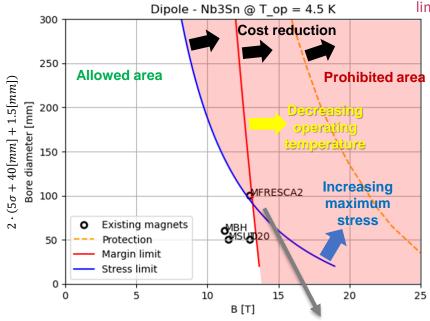
Cost and Performances




Limitation of magnet performance fixed by total magnet cost: 400 kEUR/m (~Twice FCC-hh value [1])

Magnet cross-section design: **optimization process** Separation of total magnet cost:

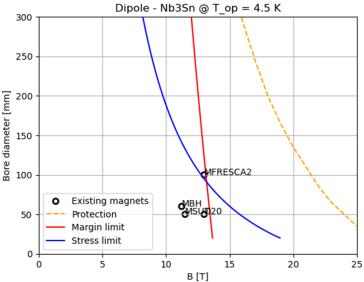
- 1. Cost of the labour = 40 kEUR/m (derived from FCC)
- 2. Cost of material = 380 kEUR/m
 - Physical limitation on magnet dimensions:
 - a) Coil width: $10 mm \le w_c \le 80 mm$
 - Structures: $w_s \le 60 \ mm$ (SS cost: 10 EUR/kg (HL-LHC))
 - Iron yoke: $w_i \leq 350 \ mm$ (Fe cost: 8 EUR/kg (HL-LHC))



The **stress limit** considers the maximum mechanical stress we can have on the coils, starting from the analytical formula for the midplane pressure of cos-theta magnet in sector coil approx.

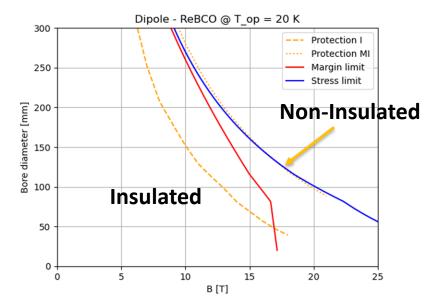
The margin limit is the limit due to the SC material itself, starting from the Bottura's fit for the critical current density.

The **protection limit** consists in QH (or CLIQ) for classical insulated coils, limiting the hotspot temperature and the stored energy in the coils. (courtesy of Tiina Salmi)


- With more budget (or cheaper SC), the allowed region increase.
- By reducing the operating temperature (or the temperature margin), the limitation due to the margin is weaker.
- By increasing the maximum allowable stress, the limitation due to the margin is weaker.

The limit changes: in this case, before the intersection, the stricter limit is the stress while after it is the margin.

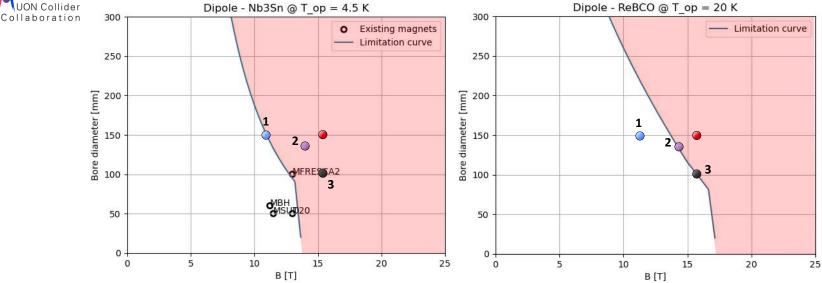
Dipole Performances



Stronger Limitations: Stress and Margin

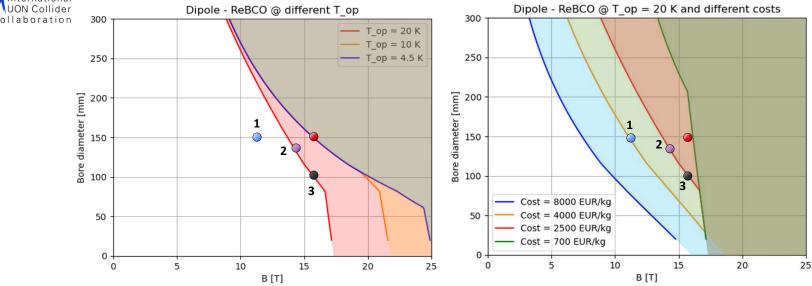
Quench protection not a problem

Performances compatible with 3 TeV ARC


ReBCO HTS design strongly limited by protection!

- Need to devise alternative protection schemes: Non-Insulated and Metal-Insulated coils
- Need of an R&D development program

Possible Variations

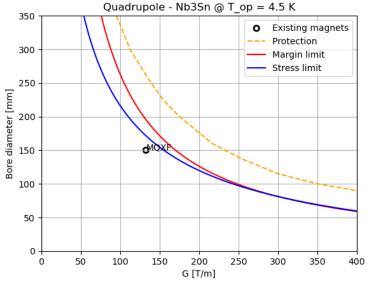

	Field	Shielding Outer Diameter $2 \cdot (5\sigma + 4[cm])$	Coil Inner Diameter
Baseline	$B_d \approx 16 T$	127 mm	158 mm
1	$B_d \approx 11 T$	119 mm	150 mm (3 TeV ARC)
2	$B_d \approx 14 T$	109 mm	140 mm
3	$B_d \approx 16 T$	69 mm	100 mm

Three possible configurations considered:

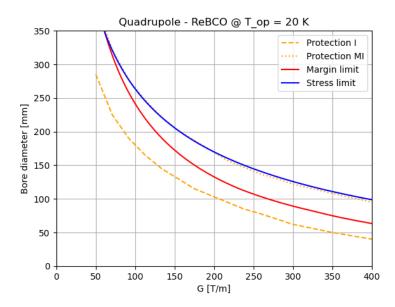
- 1. Magnetic Field: Nb₃Sn Variation (11 T/150 mm)
- 2. Mixed Solution: ReBCO (14 T, 140 mm)
- 3. Shield/beam reduction: ReBCO (16 T, 100 mm)

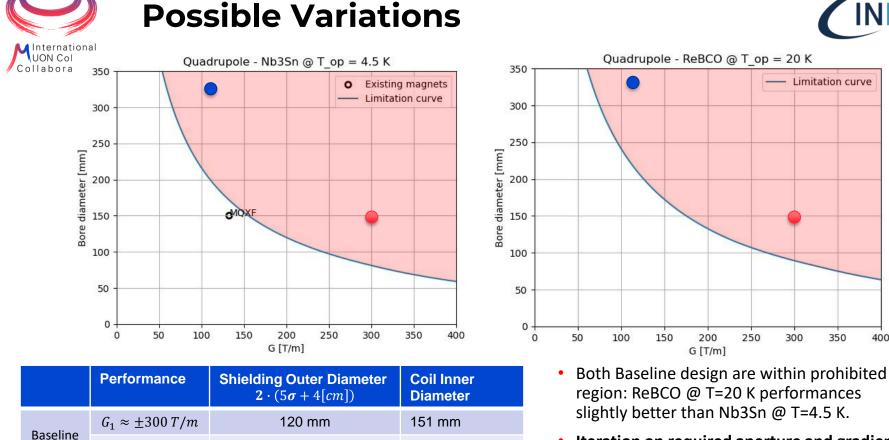
ARC Dipoles Heat Load

	2 cm	3 cm	4 cm
Beam aperture (radius)	23.5 mm	23.5 mm	23.5 mm
Outer shielding radius	43.5 mm	53.5 mm	63.5 mm
Inner coil aperture (radius)	59 mm	69 mm	79 mm
Power penetrating tungsten absorber	19.1 W/m (3.8%)	8.2 W/m (1.6%)	4.1 W/m (0.8%)
Peak power density in coils	6.5 mW/cm ³	2.1 mW/cm3	0.7 mW/cm ³
Peak dose in Kapton (5/10 years)	56/112 MGy	18/36 MGy	7/14 MGy
Peak dose in coils (5/10 years)	45/90 MGy	15/30 MGy	5/10 MGy
Peak DPA in coils (5/10 years)	8/16×10 ⁻⁵ DPA	6/12×10 ⁻⁵ DPA	5/10×10 ⁻⁵ DPA
	Со	urtesy of A. Le	chner


Currently, tungsten shielding at 40 mm thickness.

- FROM ARC Evaluation: shielding @ 30 mm and T=20 K ReBCO feasible from cooling calculation estimation enabling working point 2 but not 3
- Temperature reduction could be exploited (less magnets) but needed to be check with cooling


Quadrupole Performances


Stronger Limitations: Stress and Margin

- Quench protection not a problem
- HL-LHC MQXF quadrupole work @ 1.9 [K] and has lower cost (\$/m) than what we considered.

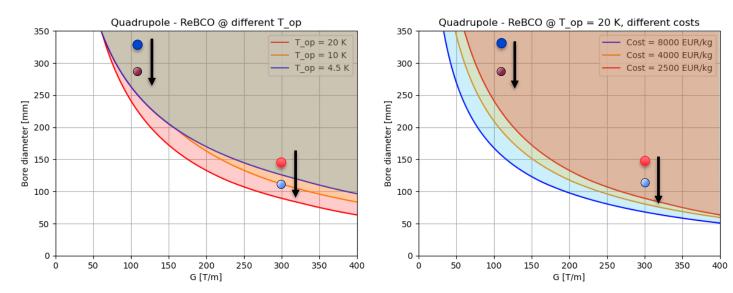
Same consideration on magnet quench protection done for the dipole configuration

Alternative Protection Scheme required

331 mm

 $G_1 \approx \pm 110 T/m$

300 mm


Iteration on required aperture and gradient •

400

Assumptions Dependance

Possible solutions: combination or lower temperature of operation and higher magnet cost (very few magnets, separated cooling solution)

Example: ReBCO @ T \approx 10 K / W \approx 2 cm ?

Performance **Shielding Outer Coil Inner Diameter Diameter** $G_1 \approx \pm 300 T/m$ 80 mm (W @ 2 cm) 111 mm 1 $G_1 \approx \pm 110 T/m$ 260 mm (W @ 2 cm) 291 mm 2

Evaluation of the performance target for the collider ring magnets of the Interaction Region (IR)

- > Maximum performances limited by **cost, mechanics, and protection**.
- > Different configurations are compared using the magnet aperture (A) field (B) plot
- Results are heavily dependent on assumptions considered

Dipoles performances

- 1. Nb₃Sn @ (T=4.5 K, B= 11T) suitable for ARC magnets also compatible with IR dipole
- 2. ReBCO @ (T=20 K, B=14 T, $\phi = 140$ mm) already suitable with cooling and tungsten shielding reduced to 3 [cm] for the ARC magnets. Need to be checked also for IR.

Quadrupoles performances: **HTS** could enable high gradient and aperture Better **high gradient** but reduce coil diameter: **shielding thickness** @ 2 [cm] and **T=10 K**???

NEXT STEPS: Combined function magnets

- > Move toward more detailed magnet configurations \rightarrow **FEM**
- **Looking forward** to have **iteration** on performance and requirements

Thank you for the attention