Detector requirements and current design for a 3 TeV and 10 TeV muon collider

Simone Pagan Griso

presenting work of many people, all mistakes mine

March 12th, 2024

IMCC and MuCol MDI Workshop

Introduction

The detector is our *interface* between collisions and the physics we are after.

Outline:

- Brief recap of Detector layout(s)
- General considerations on detector requirements
- System-specific requirements and design choices, focusing on how to further improve what we currently have laid out
 - main ref. IMCC interim report; already updates to be shown this week

Baseline 1 – 3 TeV detector

Multi-purpose detector that targets very broad physics goals.

• many components still inherited from CLIC design and can be further optimized

Detector Layouts @ 10 TeV

From the IMCC interim report, already a nice initial set of requirements, including a summary table with an initial list of requirements

Requirement	Bas	eline	Aspirational
	$\sqrt{s} = 3 \text{ TeV}$	$\sqrt{s} = 10 \text{ TeV}$	
Angular acceptance	$ \eta < 2.5$	$ \eta < 2.5$	$ \eta < 4$
Minimum tracking distance [cm]	~ 3	~ 3	< 3
Forward muons ($\eta > 5$)	<u></u>	tag	$\sigma_p/p \sim 10\%$
Track σ_{p_T}/p_T^2 [GeV ⁻¹]	4×10^{-5}	4×10^{-5}	1×10^{-5}
Photon energy resolution	$0.2/\sqrt{E}$	$0.2/\sqrt{E}$	$0.1/\sqrt{E}$
Neutral hadron energy resolution	$0.5/\sqrt{E}$	$0.4/\sqrt{E}$	$0.2/\sqrt{E}$
Timing resolution (tracker) [ps]	$\sim 30-60$	$\sim 30-60$	$\sim 10 - 30$
Timing resolution (calorimeters) [ps]	100	100	10
Timing resolution (muon system) [ps]	~ 50 for $ \eta >2.5$	~ 50 for $ \eta >2.5$	<50 for $ \eta >2.5$
Flavour tagging	b vs c	b vs c	b vs c, s-tagging
Boosted hadronic resonance ID	h vs W/Z	h vs W/Z	W vs Z

<u>Baseline</u>: mostly based on current design/ideas and physics benchmark studies <u>Aspirational</u>: motivated by significantly better physics results achievable **Requirements guide the technology** we develop, not all are the same

- <u>strict</u>: when they're absolutely necessary or physics would suffer too much
- <u>soft</u>: when meeting or exceeding them has impact on the accuracy achievable but is far from a black&white picture

Some general requirements

Radiation Hardness

- a good example of a *strict* requirement, e.g. electronics must work/survive
- great progress in validating BIB simulation at multiple c.o.m. energies
- need to specify requirements for full-run / full-program depending on detector
 - for some detector, very steep dependence on radius/placement 0

	Dose	1 MeV neutron-equivalent fluence (Si)
Vertex detector	200 kGy	$3 \times 10^{14} \text{ n/cm}^2$
Inner tracker	10 kGy	$1 \times 10^{15} \text{ n/cm}^2$
ECAL	2 kGy	$1 \times 10^{14} \text{ n/cm}^2$

Tracker - current layout

A few key quantities that are *mostly* "bottom-up": driven by BIB suppression **Granularity**

- Occupancy (BIB driven) < 1%, as LHC, how much is LHC "bias"?
- Intrinsic resolution, needed for track parameter resolution $(d_{0/2}z_0, p_T)$

Timing Timing resolution (tracker) [ps] $\sim 30 - 60 \sim 30 - 60 \sim 10 - 30$

- Reduction of out-of-time BIB, some c.o.m. energy dependence (not strong)
- Can be traded-off for other BIB suppression (cluster shape, double-layers)
- Can also be used to determine accurate timing of collision (TOF)

Tracker - II

EM Calorimeter

Baseline inherited by CLIC design

- highly granular Si-W calorimeter
- more recent exploring significantly chapear and more optimized solutions, e.g. Crilin

Energy resolution

- needed for good signal (e.g. H to photons) to background ratio
- strongly depends on energy threshold and BIB suppression
- need to include/assess impact of other terms of the resolutions

Segmentation

- transverse
 - options considered very finely seg.
- longitudinal
 - strong BIB radial dependence

EM Calorimeter - II

Timing

- <u>time-of-arrival</u> ~ 0.1ns
 - BIB suppression
 - stand-alone capability for ToF
- integration time ~ 100ns
 - critical for energy resolution
 - can be traded off for pulse-shape analysis for BIB subtraction

Shower containment

- dimensions of calorimeter
- do we need to *fully* contain objects from e.g. a 10 TeV Z'?

Solenoid position

- outside/inside EM calorimeter (currently: outside Had Calorimeter)
- affects shower reconstruction and expected occupancy
- both options being studied, affect strongly how we can reach requirements

Hadronic Calorimeter

Strongly reduced BIB, even more if moving solenoid inside **Hadronic jet resolution**

"Central" Muon Spectrometer

Standalone muon reconstruction

- momentum accuracy for high- p_{T}
 - magnetic field, lever-arm
 - appropriate benchmark?
 might not need great resolution to find new multi-TeV objects
- helps for long-lived particle decays

Detector size

- linked to momentum resolution
- a large volume helps in neutral long-lived particles reconstruction

Timing capabilities

Timing resolution (muon system) [ps] ~ 50 for $|\eta| > 2.5 \sim 50$ for $|\eta| > 2.5 < 50$ for $|\eta| > 2.5$

- reduce BIB where needed
- best ToF for particles passing calorimeter
- how *strict* is this requirement?
 - trade-off with higher multiplicity
 - most important use-case might come from long-lived particle ToF

(Very) Forward Muons

see also Daniele's talk

= y,Z

μ

Due to the predominance of VBF processes

- when neutral current, muons in final state
- unfortunately some get "captured" since very close to beam trajectory

Forward muons ($\eta > 5$)

tag $\sigma_p/p \sim 10\%$

Forward Muon Tagging

- already incredibly useful to tag neutral-current interactions
- angular information

Forward Muon Momentum

- ideally some momentum resolution can increase our physics reach, e.g. H->inv
- Very non trivial, a few studies point to ~10% as a great target

Several ideas to instrument the nozzle already being developed.

A few more requirements we'd love to add

Particle Identification

- intrinsic dE/dx and ToF capabilities of existing detectors
- need for dedicated detectors? e.g. cherenkov
- need for a few benchmark cases to assess

Luminosity

- Online, feedback needed from accelerators; assuming ~5%
- Offline, review precision measurements but likely aspire to 0.1-0.5%
 - multiple methods are critical to control systematics
 - other well-predicted processes other than Bhabha scattering?

Data Acquisition System

- roughly expect a rate of data out of the detector not far from HL-LHC
 possibility of streaming data
 - need more accurate estimates to form requirements for DAQ system
- bottom-up: need input from systems (especially tracking) on needed accuracy of information (timing, E, ...)
 - some initial studies performed using realistic digitization, need to be expanded

Conclusions

Detector layout concepts evolving from the initial CLIC-like detector

• new results expected this week as well

As stressed already, the tight connection between accelerator, detector and theory is instrumental in defining detector concepts and requirements and a strength of the IMCC organization that we need to leverage at best

An initial set of requirements and performance already shown in the interim report

• still the main objective is to show we can extract at least the physics we need

Several places where we should evolve these requirements, in particular I'd strongly favor

- explicitly labeling any *strict* requirement (not met = fail)
- studying and explicitly showing how the *soft* requirements pay off in terms of physics to further motivate R&D and unique opportunities