# A magnet for a muon collider detector

Andrea Bersani



UON Collider Collaboration





- $\frown$  Dedicated meeting has been held:
  - → Detector requirements (M. Casarsa)
  - → MDI requirements (D. Calzolari)
  - → SC tech. for future colliders and detectors (A. Yamamoto)
  - → Alu. stabilised SC cables R&D at CERN (B. Cure)
  - → 3.6 T CLIC like detector (M. Mentink)
  - → Detector magnet survey (AB)
- $\sim$  CLIC detector is considered a good starting point for the Muon Collider detector
- $\frown$  Other possibilities should be taken into account
  - → different SC materials
  - $\frown$  different cable protection
  - → different geometries

 $\sim$  "Traditional" aluminium stabilised NbTi based Rutherford cable is the baseline



# Aluminium stabilised cables (B. Cure slides)

- $\neg$  All major detector magnets are based on this technology  $\neg$  Presently this is disappearing from industry  $\sim$  CERN has a R&D program to resume production and disseminate in industry → Wuxy Toly Electric Works demonstrated some capability (Chinese company) → Collaboration has been initiated among CERN and KEK  $\sim$  This is considered crucial for the future detectors generations → Both pure aluminium and NiAl co-extrusion are of interest
- → Both NbTi and other SC materials are of interest

|                                                                                          | SPS fixed target<br>Other fixed target; FAIR (hep)<br>Belle II<br>ALICE LS3<br>PIP-II/DUNE/Hyper-K | ALICE 3<br>LHCb (≥ LS4)<br>EIC<br>LHeC |
|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------|
| ELEPOPEAN STRATEGY FOR PARTICLE PHYSICS<br>Accelerator R&D Roseman<br>ELEPOPEAN Strategy | < 2030                                                                                             | 2030-2035                              |

CERN, Mar. 2024



#### Future proposed particle physics experiments being studied: from LDG Accelerator R&D Report, CERN 2022-001



### Near future programs (A. Yamamoto slides)

10.00

8888



#### CERN, Mar. 2024



| Target spectrometer<br>solenoid |
|---------------------------------|
| 1.8                             |
| ~3.1                            |
| 2                               |
| 22                              |
|                                 |



The PANDA detector layout

- Presentation by L. Schmitt (GSI)
- For fixed-target anti-matter physics at FAIR, foreseen to start operation by 2029
- With strong involvement of various Russian institutes, including the Budker Institute of Nuclear Physics
- Featuring a 2 T superconducting solenoid, with a stored magnetic energy of 22 MJ
- Conductor: Aluminum-stabilized Nb-Ti/Cu conductor technology, under development through a R&D effort by Russian institutes and industry (BINP, VNIINM Bochvar, VNIIKP, SARKO)

#### **The Electron-Ion Collider**

| Detector<br>solenoid #1 | Detector<br>solenoid #2                            |
|-------------------------|----------------------------------------------------|
| 2.8                     | 3.2                                                |
| 3.5                     | 3.6                                                |
| 2.0                     | 3.0                                                |
| 46                      | ~150                                               |
|                         | Detector<br>solenoid #1<br>2.8<br>3.5<br>2.0<br>46 |

Magnet parameters

- Presentation by R. Rajput-Ghoshal (Jefferson Lab)
- For the Electron-Ion Collider project to be hosted at BNL, with full project finalization foreseen by 2034
- Two superconducting detector solenoids, for two interaction points:
  - #1: 2 T in solenoid with a 2.8 meter warm bore diameter and a 3.5 meter cold mass length
  - #2: 3 T in solenoid with a 3.2 meter warm bore and a 3.6 meter cold mass length

Conductor:

- Solenoid #1, initial preference for reinforced aluminum-stabilized Nb-Ti/Cu, but copper-stabilized conductor can work as well
- Solenoid #2, a reinforced aluminum-stabilized Nb-Ti/Cu conductor is foreseen









# Tentative Design

- ∽ To start, I took parameters from CLIC-based design
- I assumed a ~ 50 mm gap for muon chambers between iron layers (magnet design not so sensitive to this, at this level)
- ✓ 6 layers in the end-caps, 7
  layers in the barrel
- ∽ Total coil length 7.8 meters, diameter 7.3 meters
- $\frown$  Field at centre 3.75 T
- Very similar calculations in M. Mentink slides









## Picking inspiration from CMS



CERN, Mar. 2024





#### CMS-like

- $\frown$  Current: 20 kA equal to CMS
- $\neg$  No. of layers: 4 equal to CMS
- → Total winding thickness: 252 mm equal to CMS
- $\neg$  Cable bare section: ~ 63 x 21 mm<sup>2</sup> equal to CMS
- $\neg$  Current density: ~ 13 MA/m<sup>2</sup> equal to CMS
- $\sim$  Stored energy: 1.93 GJ 75% of CMS one
- $\neg$  Inductance: ~ 10 H 70% of CMS one
- $\frown$  Field at centre: 3.5 T CMS is 4 T
- → No. of turns: ~ 1500 CMS is > 2000
- $\neg$  Good: with a "known" cable, design etc. you get something very close to what you need  $\neg$  Coil is larger in diameter and shorter than CMS, total cable length is similar
- → Not so good: no one produces CMS cable anymore







CERN, Mar. 2024

### Slightly more optimised design





- $\frown$  Central field: 3.75 T
- → Stored energy: 2.19 MJ
- → Current density: 12.3 MA/m<sup>2</sup>
- → Total coil thickness: 288 mm
- $\frown$  6 layers:
  - $\frown$  Current: 17.7 kA
  - $\frown$  Cable size: 48 x 30 mm<sup>2</sup>
  - → Inductance: 14 H
- $\frown$  4 layers:
  - $\frown$  Current: 19.5 kA
  - $\frown$  Cable size: 72 x 22 mm<sup>2</sup>
  - → Inductance: 11.5 H
- → No significant difference
- $\neg$  A cable to be completely designed for both options (and a supplier must be found)

## 4 or 6 layers

#### To be noticed: Forces are non trivially contained No optimisation on longitudinal stress at today Some splitting in sub-coils will be needed This is a challenging design, overall



### Some remarks on field quality

- ∽ Tracker region: -2200 < z < 2200, 0 < r < 1500
- ∽ B at IP: 3.75 T
- $\neg$  B = 3.63 ± 0.2 T
- → Field uniformity: ±5.5%
- $\frown$  (No optimisation)
- $\neg$  Max Br = 0.2 T





- → Maximum field on conductor: 4.125 T → NbTi stabilised in aluminium can work properly
  - $\sim$  CMS cable seems very promising as a starting point for the development
  - $\frown$  No company is producing this cable
  - $\sim$  No trivial alternative is available IMHO
- → Hoop stress is possibly not terrible
  - attempted
- $\frown$  No optimisation at all has been performed  $\frown$  Some interface with the detectors can possibly be defined

 $\neg$  Forces on the coil are HUGE (super preliminary results - no sense to give numbers at this stage)

 $\sim$  Stress management via sub-coils with mechanical supports, reduction of Br and other tricks can be





#### Mechanics (M. Mentink slides)

- The energy density (= Stored magnet energy / cold mass) = 11.6 kJ/kg (same as CMS)
- At nominal current: 94
  MPa maximum von
  Mises stress, and 0.13%
  tensile strain applied to
  conductor due to
  powering of the coil

Peak Von Mises stress: 94 MPa

Peak tensile strain: 0.13%













# Conductor alternatives (M. Mentink slides)

→ Aluminium-stabilised Nb-Ti conductor advantages/disadvantages: → Nb-Ti strands are cost-effective, mechanically extremely resilient, and widely available. T in aluminium-stabilised conduction-cooled superconducting detector magnets → Aluminum is lightweight, transparent, good for quench protection, stability, and mechanics  $\sim$  Well-understood and extensively proven technology, has been in use for 50 years  $\sim$  It requires low operating temperature (4.5 K) and commercial availability is presently unclear → (Aluminium-stabilised) MgB2 conductor technology advantages/disadvantages: mechanically robust than  $\neg$  Nb-Ti, currently only allows a limited magnetic field range (probably not suited for 4 T)

- → Useful for superconducting busbars
- → Allows operation at higher temperatures, and benefits from technology developments through the HL-LHC Superconducting Link project
- → Aluminium-stabilised High Temperature Superconducting (ReBCO / Bi-22223) conductor advantages/disadvantages: ∽ More expensive than aluminium-stabilised Nb-Ti, not yet available in long lengths, not yet fully understood, less
  - mechanically robust than Nb-Ti
  - → High-purity aluminium-stabilisation is not needed, although aluminum is still required to carry the current during a quench
  - → Useful for superconducting busbars
  - $\frown$  Enables operation at much higher temperatures and magnetic fields

- → Nb-Ti gives sufficient magnetic field range for typical superconducting detector magnet applications: Comfortably up to 4
- ∽ More expensive than aluminium-stabilised Nb-Ti, requires development for use in superconducting detector magnets, less





CERN, Mar. 2024

#### Space for optimisation



### Another magnet (DUNE ND-GAr SPY@DND)

- → Way lower field, similar size...
  - $\neg$  Asymmetric iron (2) (axis is vertical)
  - $\sim 0.5 \,\mathrm{T}$  central field
  - $\frown$  6 sub coils (1)
- ∽ Shaped, closed end caps (3)
  ∽ BUT

B deviation in the TPC w.r.t. 0.5 T (%)



→ Indeed, it was easier :-)

CERN, Mar. 2024





- → Tungsten cones protect the detectors from beams haloes
- → These are large and heavy
  - → Preliminary chat with JLAB people with experience shows that this could be non trivial
  - $\frown$  Any possible alternative (steel boxes filled with lead, as an example) should be investigated
- ∽ Companies work alloys up to 97.5% tungsten
  - → different compositions have different mechanical properties and machinability
  - $\neg$  density is always very large
  - $\neg$  it's not fragile
- → Picture: JLAB Hall B Forward Tagger, with a tungsten Moeller cone ~ 1 m long

#### Integration with tungsten cones





- $\neg$  A magnet capable of 3.75 T, cold bore dia. ~ 7 m, length ~ 8 m should be technically feasible  $\neg$  Using the same cable and current as for CMS one gets a field slightly lower than the goal  $\frown$  Possible small modifications can make the desired field reachable

- Due to the magnet form factor (length is very similar to diameter), the field uniformity is very limited
- $\frown$  Forces on the coil are completely to be studied
- → There is plenty of space for optimisation
- $\neg$  According to detectors requirements some further study can be started (manpower?)

