Andrea Bersani

International UON Collider
Collaboration

A magnet for a muon collider detector

 \sim "Traditional" aluminium stabilised NbTi based Rutherford cable is the baseline

- \bigcap Dedicated meeting has been held:
	- Detector requirements (M. Casarsa)
	- MDI requirements (D. Calzolari)
	- \bigcap SC tech. for future colliders and detectors (A. Yamamoto)
	- Alu. stabilised SC cables R&D at CERN (B. Cure)
	- \sim 3.6 T CLIC like detector (M. Mentink)
	- \bigcap Detector magnet survey (AB)
- \sim CLIC detector is considered a good starting point for the Muon Collider detector
-
- \sim Other possibilities should be taken into account
	- different SC materials
	- different cable protection
	- different geometries

Aluminium stabilised cables (B. Cure slides)

- \sim All major detector magnets are based on this technology \cap Presently this is disappearing from industry \sim CERN has a R&D program to resume production and disseminate in industry \sim Wuxy Toly Electric Works demonstrated some capability (Chinese company) \sim Collaboration has been initiated among CERN and KEK \sim This is considered crucial for the future detectors generations \sim Both pure aluminium and NiAl co-extrusion are of interest
- Both NbTi and other SC materials are of interest

Future proposed particle physics experiments being studied: from LDG Accelerator R&D Report, CERN 2022-001

The PANDA detector layout

- Presentation by L. Schmitt (GSI)
- For fixed-target anti-matter physics at FAIR, foreseen to start operation by 2029
- . With strong involvement of various Russian institutes, including the Budker Institute of Nuclear Physics
- Featuring a 2 T superconducting solenoid, with a stored magnetic energy of 22 MJ
- Conductor: Aluminum-stabilized Nb-Ti/Cu conductor technology, under development through a R&D effort by Russian institutes and industry (BINP, VNIINM Bochvar, VNIIKP, SARKO)

The Electron-Ion Collider

Magnet parameters

- Presentation by R. Rajput-Ghoshal (Jefferson Lab)
- For the Electron-Ion Collider project to be hosted at BNL, with full project finalization foreseen by 2034
- Two superconducting detector solenoids, for two interaction points:
	- #1: 2 T in solenoid with a 2.8 meter warm bore diameter and a 3.5 meter cold mass length
	- #2: 3 T in solenoid with a 3.2 meter warm bore and a 3.6 meter cold mass length

Conductor:

- Solenoid #1, initial preference for reinforced aluminum-stabilized Nb-Ti/Cu, but copper-stabilized conductor can work as well
- · Solenoid #2, a reinforced aluminum-stabilized Nb-Ti/Cu conductor is foreseen

Near future programs (A. Yamamoto slides)

Silver

888

2010/10/2

Tentative Design

- \bigcap To start, I took parameters from CLIC-based design
- \bigcap I assumed a ~ 50 mm gap for muon chambers between iron layers (magnet design not so sensitive to this, at this level)
- \sim 6 layers in the end-caps, 7 layers in the barrel
- Total coil length 7.8 meters, diameter 7.3 meters
- \cap Field at centre 3.75 T
- Very similar calculations in M. Mentink slides

Picking inspiration from CMS

CMS-like

- \sim Current: 20 kA equal to CMS
- \bigcap No. of layers: 4 equal to CMS
- \sim Total winding thickness: 252 mm equal to CMS
- \sim Cable bare section: \sim 63 x 21 mm² equal to CMS
- \sim Current density: \sim 13 MA/m² equal to CMS
- Stored energy: 1.93 GJ 75% of CMS one
- \sim Inductance: \sim 10 H 70% of CMS one
- \cap Field at centre: 3.5 T CMS is 4 T
- \sim No. of turns: \sim 1500 CMS is > 2000
- \sim Good: with a "known" cable, design etc. you get something very close to what you need \sim Coil is larger in diameter and shorter than CMS, total cable length is similar
- \cap Not so good: no one produces CMS cable anymore

Slightly more optimised design

- \cap Central field: 3.75 T
- Stored energy: 2.19 MJ
- Current density: 12.3 MA/m2
- Total coil thickness: 288 mm
- \bigcirc 6 layers:
	- \sim Current: 17.7 kA
	- \sim Cable size: 48 x 30 mm²
	- \cap Inductance: 14 H
- \bigcap 4 layers:
	- \sim Current: 19.5 kA
	- \sim Cable size: 72 x 22 mm²
	- \bigcap Inductance: 11.5 H
- \bigcap No significant difference
- \cap A cable to be completely designed for both options (and a supplier must be found)

4 or 6 layers

To be noticed: Forces are non trivially contained No optimisation on longitudinal stress at today Some splitting in sub-coils will be needed This is a challenging design, overall

- Tracker region: -2200 < z < 2200, 0 < r < 1500
- B at IP: 3.75 T
- $\bigcap B = 3.63 \pm 0.2$ T
- Field uniformity: ±5.5%
- (No optimisation)
- \bigcap Max Br = 0.2 T

Some remarks on field quality

- \sim Maximum field on conductor: 4.125 T \bigcap NbTi stabilised in aluminium can work properly
	- \sim CMS cable seems very promising as a starting point for the development
	- \bigcap No company is producing this cable
	- No trivial alternative is available IMHO
- \bigcap Hoop stress is possibly not terrible Compressive forces are really large attempted
- No optimisation at all has been performed \cap Some interface with the detectors can possibly be defined

 \sim Forces on the coil are HUGE (super preliminary results - no sense to give numbers at this stage)

 \sim Stress management via sub-coils with mechanical supports, reduction of Br and other tricks can be

Mechanics (M. Mentink slides)

- \bigcap The energy density (= Stored magnet energy / cold mass) = 11.6 kJ/kg (same as CMS)
- At nominal current: 94 MPa maximum von Mises stress, and 0.13% tensile strain applied to conductor due to powering of the coil

Peak Von Mises stress: 94 MPa

Peak tensile strain: $0.13%$

-
-
- \cap Nb-Ti gives sufficient magnetic field range for typical superconducting detector magnet applications: Comfortably up to 4
	-
	-
	-
	-
	-
- \cap More expensive than aluminium-stabilised Nb-Ti, requires development for use in superconducting detector magnets, less
	-

Conductor alternatives (M. Mentink slides)

 \sim Aluminium-stabilised Nb-Ti conductor advantages/disadvantages: Nb-Ti strands are cost-effective, mechanically extremely resilient, and widely available. T in aluminium-stabilised conduction-cooled superconducting detector magnets \cap Aluminum is lightweight, transparent, good for quench protection, stability, and mechanics \sim Well-understood and extensively proven technology, has been in use for 50 years \cap It requires low operating temperature (4.5 K) and commercial availability is presently unclear \sim (Aluminium-stabilised) MgB2 conductor technology advantages/disadvantages: mechanically robust than \sim Nb-Ti, currently only allows a limited magnetic field range (probably not suited for 4 T)

- \bigcirc Useful for superconducting busbars
- \cap Allows operation at higher temperatures, and benefits from technology developments through the HL-LHC Superconducting Link project
- \sim Aluminium-stabilised High Temperature Superconducting (ReBCO / Bi-22223) conductor advantages/disadvantages: \sim More expensive than aluminium-stabilised Nb-Ti, not yet available in long lengths, not yet fully understood, less
	- mechanically robust than Nb-Ti
	- \cap High-purity aluminium-stabilisation is not needed, although aluminum is still required to carry the current during a quench
	- \bigcirc Useful for superconducting busbars
	- \sim Enables operation at much higher temperatures and magnetic fields

Space for optimisation

Way lower field, similar size... Asymmetric iron (2) (axis is vertical) \bigcirc 0.5 T central field \bigcirc 6 sub coils (1)

Another magnet (DUNE ND-GAr SPY@DND)

Indeed, it was easier :-) \bigcap

Shaped, closed end caps (3) BUT

B deviation in the TPC w.r.t. 0.5 T (%)

Integration with tungsten cones

- \cap Tungsten cones protect the detectors from beams haloes
- These are large and heavy
	- Preliminary chat with JLAB people with experience shows that this could be non trivial
	- Any possible alternative (steel boxes filled with lead, as an example) should be investigated
- Companies work alloys up to 97.5% tungsten
	- different compositions have different mechanical properties and machinability
	- density is always very large
	- it's not fragile
- Picture: JLAB Hall B Forward Tagger, with a tungsten Moeller cone ~ 1 m long

- \sim A magnet capable of 3.75 T, cold bore dia. \sim 7 m, length \sim 8 m should be technically feasible \sim Using the same cable and current as for CMS one gets a field slightly lower than the goal \cap Possible small modifications can make the desired field reachable
-
-
- \cap Due to the magnet form factor (length is very similar to diameter), the field uniformity is very limited
- \cap Forces on the coil are completely to be studied
- \cap There is plenty of space for optimisation
- \sim According to detectors requirements some further study can be started (manpower?)