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1

2
Tungsten

6 m

60 cm

𝟑 𝑻𝒆𝑽 MDI

▪ MAP design[1] with mixed function FF 

quadrupoles (Cyan)

IP

▪MAP nozzle design:

1) 10° closest to the IP

2) 5° starting from 𝑧 = 100 𝑐𝑚



BIB simulation with FLUKA

▪ Generated one beam of 𝜇+ decays within 𝟓𝟓 𝒎 from the 

Interaction Point

▪ Energy threshold for particles production fixed at 

𝟏𝟎𝟎 𝒌𝒆𝑽

▪ Particles which arrives to the nozzles are scored

Pictures from D. Calzolari

▪ Propagation through the Nozzles

▪ Particles who exit the nozzle and enters the detector 

area are scored

▪ ~1.6% of one BIB event (i.e. bunch crossing) considering 

only 1 beam → 𝟒 𝒅𝒂𝒚𝒔 per simulation
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BIB simulation with FLUKA
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Forward Muons
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▪ Why are we interested in forward 

muons?

▪ Allows to distinguish process from Z/W 

boson fusion

▪ Allows precise measure of Higgs boson 

Width [2, 6]

▪ New physics might have forward muons 

in the final state [3]

𝑍 𝐵𝑜𝑠𝑜𝑛 fusion with forward muon production[3]
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Forward Muons simulation

▪ Considering forward muons from 𝜇+𝜇− → 𝑍𝑍 + 𝝁+𝝁− → H + 𝝁+𝝁− → 𝐼𝑛𝑣𝑖𝑠𝑖𝑏𝑙𝑒 + 𝝁+𝝁−

▪ 5000 samples simulated according their 𝜂 and E distributions, which were assumed 
independent
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Forward Muons simulation
Scoring plane

▪ Muon shot from Interaction Point

▪ Tagging plane at the end of the

Nozzle

▪ Muon which goes into the beam 

pipe are not tagged

▪ Fraction of muon tagged: 𝟒𝟒%

Muons from
the Nozzle

Muons 
captured
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Machine Learning approach

▪ Parametrize the nozzle response as function of geometrical parameters

▪ Nozzle response could intend:

▪ Beam Induced Background total flux in the detector (easy to achieve)

▪ Hit occupancy in the vertex detector (needs detector reconstruction)

▪ Photons energy deposit in the ECAL (needs detector reconstruction)

▪ Several simulation needed, unfeasible with 1.6% of BIB



Towards ML Optimization
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▪ 1200 simulation performed

▪ 3 geometrical parameters:

▪ 𝜃𝑡𝑖𝑝 ∈ 3.8; 10 ° → 10 values

▪ |𝑧𝑐ℎ𝑎𝑛𝑔𝑒| ∈ 50; 200 cm

→ 15 values

▪ 𝑟𝑏𝑎𝑠𝑒 ∈ 20; 60 cm → 8 values

▪ 0.02% of 1 bunch crossing 

simulated

▪ Due to input settings, the real 

nozzle aperture is →

𝑟𝑏𝑎𝑠𝑒

𝑧𝑐ℎ𝑎𝑛𝑔𝑒

▪ 𝜃𝑛𝑜𝑧𝑧𝑙𝑒 = 𝑡𝑎𝑛−1 (94∙tan 𝜃𝑡𝑖𝑝)∙𝑟𝑏𝑎𝑠𝑒/60

𝑧𝑐ℎ𝑎𝑛𝑔𝑒 −2
 ∈ 0.7; 18 °

𝜃𝑛𝑜𝑧𝑧𝑙𝑒
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Flux* 
As function 
of 𝑧 at fixed 
r and theta

As function 
of 𝜃𝑡𝑖𝑝 at 
fixed r and z

*𝜎𝑓𝑙𝑢𝑥 

negligible
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ML performance

▪ XGBoost regressor trained with 960 samples

▪ Test with 240 samples

▪  Evaluate the difference as:

∆=
𝐹𝑙𝑢𝑥𝑡𝑟𝑢𝑒 − 𝐹𝑙𝑢𝑥𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝐹𝑙𝑢𝑥𝑡𝑟𝑢𝑒
∗ 100
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ML performance

▪ XGBoost regressor trained with 960 samples

▪ Test with 240 samples

▪  Evaluate the difference as:

∆=
𝐹𝑙𝑢𝑥𝑡𝑟𝑢𝑒 − 𝐹𝑙𝑢𝑥𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝐹𝑙𝑢𝑥𝑡𝑟𝑢𝑒
∗ 100
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New Nozzle Design: IX

▪ Chose after studying the results 

with low stat. simulations

▪ Nozzle with 

▪ 𝜃𝑛𝑜𝑧𝑧𝑙𝑒 = 9.2°

▪ 𝑧𝑐ℎ𝑎𝑛𝑔𝑒 = 110 𝑐𝑚

▪ 𝑟𝑏𝑎𝑠𝑒 = 60 𝑐𝑚

▪ 2% of one beam simulated

▪ Compared with Map-Like design 

with same statistics

 

Nozzle geometry compared to the Map-Like design (red line).
The Borated Polyethylene shape is due to redefinition of 
geometry in FLUKA for technical necessity 
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TIME WINDOW APPLIED

New Nozzle Design: IX



16

Design IX

▪ Occupancy obtained from 

Simulated Hits in the 

detector without any 

normalization

▪ Considered Readout 

Window and Time Window 

in the subdetectors.

▪ With this design

▪ Much Less occupancy 𝜎𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦 =
𝐻𝑖𝑡𝑠

𝐿𝑎𝑦𝑒𝑟 𝐴𝑟𝑒𝑎
, assuming 𝐻𝑖𝑡𝑠 = 𝐿𝑎𝑦𝑒𝑟 𝐴𝑟𝑒𝑎 ∗ 𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦
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▪ Chose after studying the results 

with low stat. simulations

▪ Nozzle with 

▪ 𝜃𝑛𝑜𝑧𝑧𝑙𝑒 = 6.4°

▪ 𝑧𝑐ℎ𝑎𝑛𝑔𝑒 = 110 𝑐𝑚

▪ 𝑟𝑏𝑎𝑠𝑒 = 48 𝑐𝑚

▪ 2% of one beam simulated

▪ Compared with Map-Like design 

with same statistics

 

Nozzle geometry compared to the Map-Like design (red line).
The Borated Polyethylene shape is due to redefinition of 
geometry in FLUKA for technical necessity 

New Nozzle Design: X
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TIME WINDOW APPLIED

New Nozzle Design: X
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Design X

▪ Occupancy obtained from 

Simulated Hits in the 

detector without any 

normalization

▪ Considered Readout 

Window and Time Window 

in the subdetectors.

▪ With this design

▪ Much Less occupancy 𝜎𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦 =
𝐻𝑖𝑡𝑠

𝐿𝑎𝑦𝑒𝑟 𝐴𝑟𝑒𝑎
, assuming 𝐻𝑖𝑡𝑠 = 𝐿𝑎𝑦𝑒𝑟 𝐴𝑟𝑒𝑎 ∗ 𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦
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Conclusions

▪ Machine Learning:

▪ Variation of the original geometry, no innovative design tested

▪ Basic information obtained: 𝐵𝐼𝐵 𝑓𝑙𝑢𝑥 = 𝑓 𝜃𝑡𝑖𝑝, 𝑧𝑐ℎ𝑎𝑛𝑔𝑒 , 𝑟𝑏𝑎𝑠𝑒

▪ Nozzle design:

▪ Small changes in the geometry leads to significant variation in flux and occupancy

▪ Next step:

▪ Collaboration with MODE [3] to apply advanced ML algorithm (ideally like SHIP optimization [4])

▪ Correlating particles hitting and exiting the nozzle to understand its effect

▪ Studying a proper region for a forward muons detector

https://iopscience.iop.org/article/10.1088/1742-6596/934/1/012050/pdf


Thank you for the attention
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Muon decay position
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Detector
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Low Statistic simulation

▪ Two step: 2% of one beam, one 

bunch crossing

▪ Pipeline: 0.025% of one beam, 

one bunch crossing

▪ Pipeline nozzles smaller than 

original (aperture = 20 cm)

▪ 𝜎 = #𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠
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Other Observables 

▪ Occupancy in the vertex 

detector is dominated by 

statistics

▪ Energy in the ECal not yet 

studied.



28

Design I

▪ Nozzle with 

▪ 𝜃𝑛𝑜𝑧𝑧𝑙𝑒 = 9°

▪ 𝑟𝑏𝑎𝑠𝑒 = 54 𝑐𝑚

▪ 0.38% of one beam 

simulated

▪ Compared with Map-Like 

design with same statistics

Nozzle geometry compared to the Map-Like design (red line)
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Design I

TIME WINDOW APPLIED
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Design I

TIME WINDOW APPLIED
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Design I

▪ Occupancy obtained from 

Simulated Hits in the 

detector without any 

normalization

▪ Considered Readout 

Window and Time Window 

in the subdetectors.

▪ With this design

▪ Less occupancy in the 

vertex

▪ More in the Tracker
𝜎𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦 =

𝐻𝑖𝑡𝑠

𝐿𝑎𝑦𝑒𝑟 𝐴𝑟𝑒𝑎
, assuming 𝐻𝑖𝑡𝑠 = 𝐿𝑎𝑦𝑒𝑟 𝐴𝑟𝑒𝑎 ∗ 𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦
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Design I
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Design IX

TIME WINDOW APPLIED
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Design IX

TIME WINDOW APPLIED
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Design IX
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Design X

TIME WINDOW APPLIED
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Design X
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