

Beam Induced Background at $\sqrt{s} = 3 TeV$

L. Castelli, D. Lucchesi, D. Calzolari, F. Collamati

Outline

• 3 *TeV* MDI

- MAP design
- FLUKA simulation
- Forward Muon Study
 - Goals
 - Simulation and results

Machine Learning for Nozzle Optimization

- Low statistics approach
- Results
- New Nozzles designs
 - Geometries descriptions
 - Impact on Beam Induced Background

3 TeV MDI

•MAP nozzle design:

- 1) 10° closest to the IP
- **2)** 5° starting from $z = 100 \ cm$

 MAP design[1] with mixed function FF quadrupoles (Cyan)

BIB simulation with FLUKA

- Generated one beam of μ^+ decays within **55** *m* from the Interaction Point
- Energy threshold for particles production fixed at 100 keV
- Particles which arrives to the nozzles are scored
- Propagation through the Nozzles
- Particles who exit the nozzle and enters the detector

area are scored

~1.6% of one BIB event (i.e. bunch crossing) considering

only 1 beam \rightarrow 4 days per simulation

BIB simulation with FLUKA

Forward Muons

Why are we interested in forward

muons?

- Allows to distinguish process from Z/W boson fusion
- Allows precise measure of Higgs boson
 Width [2, 6]
- New physics might have forward muons in the final state [3]

Z Boson fusion with forward muon production[3]

Forward Muons simulation

- Considering forward muons from $\mu^+\mu^- \rightarrow ZZ + \mu^+\mu^- \rightarrow H + \mu^+\mu^- \rightarrow Invisible + \mu^+\mu^-$
- 5000 samples simulated according their η and E distributions, which were assumed independent

Forward Muons simulation

- Muon shot from Interaction Point
- Tagging plane at the end of the Nozzle
- Muon which goes into the beam pipe are **not** tagged
- Fraction of muon tagged: 44%

Machine Learning approach

- Parametrize the nozzle response as function of geometrical parameters
- Nozzle response could intend:
 - Beam Induced Background total flux in the detector (easy to achieve)
 - Hit occupancy in the vertex detector (needs detector reconstruction)
 - Photons energy deposit in the ECAL (needs detector reconstruction)
- Several simulation needed, unfeasible with 1.6% of BIB

Towards ML Optimization

- 1200 simulation performed
- 3 geometrical parameters:
 - $\theta_{tip} \in [3.8; 10]^\circ \rightarrow 10$ values
 - $|z_{change}| \in [50; 200]$ cm
 - \rightarrow 15 values
 - $r_{base} \in [20; 60] \text{ cm} \rightarrow 8 \text{ values}$
- 0.02% of 1 bunch crossing simulated

18]°

Due to input settings, the real

nozzle aperture is $\rightarrow \quad \theta_{nozzle}$

$$_{e} = tan^{-1} \left[\frac{(94 \cdot \tan \theta_{tip}) \cdot r_{base}/60}{|z_{change}|-2} \right] \in [0.7;$$

ML performance

XGBoost regressor trained with 960 samples

Test with 240 samples

Evaluate the difference as:

$$\Delta = \frac{Flux_{true} - Flux_{predicted}}{Flux_{true}} * 100$$

ML performance

- XGBoost regressor trained with 960 samples
- Test with 240 samples
- Evaluate the difference as:

$$\Delta = \frac{Flux_{true} - Flux_{predicted}}{Flux_{true}} * 100$$

New Nozzle Design: IX

- Chose after studying the results with low stat. simulations
- Nozzle with
 - $\theta_{nozzle} = 9.2^{\circ}$
 - $z_{change} = 110 \ cm$
 - $r_{base} = 60 \ cm$
- 2% of one beam simulated
- Compared with Map-Like design with same statistics

Nozzle geometry compared to the Map-Like design (red line). The Borated Polyethylene shape is due to redefinition of geometry in FLUKA for technical necessity

New Nozzle Design: IX

 Occupancy obtained from Simulated Hits in the detector without any normalization
 Considered Readout

Window and Time Window in the subdetectors.

With this design

Much Less occupancy

New Nozzle Design: X

- Chose after studying the results with low stat. simulations
- Nozzle with
 - $\theta_{nozzle} = 6.4^{\circ}$
 - $z_{change} = 110 \ cm$
 - $r_{base} = 48 \ cm$
- 2% of one beam simulated
- Compared with Map-Like design with same statistics

Nozzle geometry compared to the Map-Like design (red line). The Borated Polyethylene shape is due to redefinition of geometry in FLUKA for technical necessity

New Nozzle Design: X

 Occupancy obtained from Simulated Hits in the detector without any normalization
 Considered Readout

Window and Time Window in the subdetectors.

With this design

Much Less occupancy

Conclusions

Machine Learning:

- Variation of the original geometry, no innovative design tested
- Basic information obtained: *BIB* $flux = f(\theta_{tip}, z_{change}, r_{base})$

Nozzle design:

Small changes in the geometry leads to significant variation in flux and occupancy

Next step:

- Collaboration with MODE [3] to apply advanced ML algorithm (ideally like <u>SHIP optimization</u> [4])
- Correlating particles hitting and exiting the nozzle to understand its effect
- Studying a proper region for a forward muons detector

Thank you for the attention

References

[1] Y. Alexahin, E. Gianfelice-Wendt, A 3-TeV MUON COLLIDER LATTICE DESIGN, Insiperhep.net

- [2] P. Li, Z. Liu, K. Lyu, HIGGS WIDTH AND COUPLINGS AT HIGH ENERGY MUON COLLIDERS WITH FORWARD MUON DETECTION, <u>arxiv.org</u>
- [3] M. Ruhdorfer, E. Salvioni, A. Wulzer, INVISIBLE HIGGS FROM FORWARD MUONS AT A MUON COLLIDER, <u>arxiv.org</u>
- [4] MODE Collaboration, <u>mode.github</u>
- [5] A. Baranov et al., OPTIMIZING THE ACTIVE MUON SHIELD FOR THE SHIP EXPERIMENT AT CERN, <u>SHIP optimization</u>
- [6] Z. Liu, HIGGS WIDTH AND COUPLINGS AT HIGH ENERGY MUON COLLIDERS WITH FORWARD MUON DETECTION, <u>indico.cern</u>

Muon decay position

- 60 layers of 19-mm steel absorber + plastic scintillating tiles;
- \bullet 30x30 mm² cell size;

electromagnetic calorimeter

- 40 layers of 1.9-mm W absorber + silicon pad sensors;
- 5x5 mm² cell granularity;

muon detectors

- 7-barrel, 6-endcap RPC layers interleaved in the magnet's iron yoke;
- 30x30 mm² cell size.

Detector

superconducting solenoid (3.57T)

tracking system

- Vertex Detector:
 - double-sensor layers (4 barrel cylinders and 4+4 endcap disks);
 - 25x25 µm² pixel Si sensors.
- Inner Tracker:
 - 3 barrel layers and 7+7 endcap disks;
 - 50 µm x 1 mm macropixel Si sensors.
- Outer Tracker:
 - 3 barrel layers and 4+4 endcap disks;
 - 50 µm x 10 mm microstrip Si sensors.

shielding nozzles

 Tungsten cones + borated polyethylene cladding.

Low Statistic simulation

- Two step: 2% of one beam, one bunch crossing
- Pipeline: 0.025% of one beam, one bunch crossing
- Pipeline nozzles smaller than

26

original (aperture = 20 cm)

• $\sigma = \sqrt{\# particles}$

Other Observables

- Occupancy in the vertex detector is dominated by statistics
- Energy in the ECal not yet studied.

- Nozzle with
 - $\theta_{nozzle} = 9^{\circ}$
 - $r_{base} = 54 \ cm$
- 0.38% of one beam

simulated

Compared with Map-Like

design with same statistics

Design I

Nozzle geometry compared to the Map-Like design (red line)

Design I

Design I

- Occupancy obtained from
 Simulated Hits in the
 detector without any
 normalization
- Considered Readout
 Window and Time Window in the subdetectors.
- With this design
 - Less occupancy in the vertex
 - More in the Tracker

Design I

Design IX

Design IX

Design IX

Design X

Design X

