After Chiplr: ISIS-II & Irradiation Christopher Frost

GB-RADNEXT Workshop 12-13 June 2024

Science and Technology Facilities Council

ISIS Neutron and Muon Source

ISIS-II

Next generation neutron source with construction 2030's and operation 2040's.

Irradiation Capabilities

ISIS-II provides opportunity to consider UK's and European future irradiation needs

Muon Source

www.isis.stfc.ac.uk

@isisneutronmuon \mathbb{X} (0)

In the mid 2000s ISIS developed the idea of creating a new beamline for the accelerated testing of electronics to utilise the fast, high energy neutrons that had not yet been exploited at this kind of generalised neutron sources

Simple idea: extract a high intensity, fast neutron beam to mimic the atmospheric cosmic rays neutron spectrum

ISIS Neutron and Muon Source

www.isis.stfc.ac.uk

@isisneutronmuon

ຫຼື uk.linkedin.com/showcase/isis-neutron-and-muon-source

'Moderators' and Beryllium 'reflector' are used to optimise high fluxes of thermal neutrons for condensed matter studies.

Problem: target complex optimised for thermal neutron beamlines; no 'good' direct view of target

New Approach Needed at ISIS

Uses fast neutron flux from ISIS source in two stage process

Quite a simple concept:-

- Create hardened spectrum from Target/Moderator/Reflection
- Illuminate secondary scatterer to produce beams

Fast Neutrons from Target 2

- www.isis.stfc.ac.uk
- 🕅 (O) @isisneutronmuon
- الس) uk.linkedin.com/showcase/isis-neutron-and-muon-source

Uses fast neutron flux from ISIS source in two stage process

Quite a simple concept:-

- Create hardened spectrum from Target/Moderator/Reflection
- Illuminate secondary scatterer to produce beams

800

Chiplr 2023

Atmospheric x 10⁹

Created highly capable irradiation facility

BUT 'retro-fit' forced compromise in the design:-

- Angled beam is not ideal ٠
- Collimation more difficult (space and angle) ٠

800MeV, largest collimation setting with no jaws

Intensity Maps of ChipIr beam

Typically Collimated beam (70mmx60mm)

Neutron Irradiation Facilities: ANIS@CSNS

Second iteration of this type of design

Also quite a simple concept:-

- Create hardened spectrum from Target/Moderator/Reflection
- Deliver this to blockhouse with 'optical' components shaping beam ٠

m uk.linkedin.com/showcase/isis-neutron-and-muon-source

Neutron filter

Neutron Shutter

Neutron tube I

www.isis.stfc.ac.uk

Flux controller

Ж @isisneutronmuon

Clearing magnet Neutron tube II

Talk later in session....

Scenario I **Neutron Irradiation Beamline** on one of the ISIS-II Target

ChipIr & ANIS provide solution for ISIS-II

For discussion

Proton Driver Energy	>500MeV	
Proton Beam Delivery	individual proton pulses to generate neutron intensity in test position no greater than current ISIS TS2 (2.8x10 ⁵ neutrons per pulse)	
	>= 10Hz frequency (i.e.no worse than current TS2)	
Target	W-Ta (static, solid target)	
Neutron Intensity & Control	>10 ⁶ n/cm2/s integrate above 10MeV at instrument distance ability to control intensity by factor 100	
Neutron Spectrum	Atmospheric (matching JEDEC89, IEC)	
Fast Neutron Channel in Reflector	Forward direction and horizonal with direct view of target from instrument	

im uk.linkedin.com/showcase/isis-neutron-and-muon-source

ISIS Neutron and Muon Source

ISIS Neutron and Muon Source ₩www.isis.stfc.ac.uk

X O @isisneutronmuon

im uk.linkedin.com/showcase/isis-neutron-and-muon-source

McEwen, M., Faoro, L., Arya, K. *et al.* . *Nat. Phys.* **18**, 107–111 (2022). Vepsäläinen, A.P., Karamlou, A.H., Orrell, J.L. *et al.* . *Nature* **584**, 551–556 (2020).

Scenario I

	Advantage	Disadvantage
Neutrons	 design technically possible clear improvement on ChipIr lowest total cost (typical instrument cost) 	 more complex design (as part of target/reflector design)

Development Level: LOW

ISIS Neutron and Muon Source

www.isis.stfc.ac.uk

@isisneutronmuon \mathbb{X} (0)

im uk.linkedin.com/showcase/isis-neutron-and-muon-source

Delivers:

- Basic requirement by (neutron) irradiation community •
- Continuity of provision if 'Day One' instrument •

Scenario II

Extension of Scenario I Add Parasitic 200MeV Proton Beamline

Extract protons at 200MeV point possibly driven by a proton pulse train interleaved with the H⁻ pulse train

ISIS Neutron and Muon Source

Scenario II

ISIS Neutron and Muon Source

m uk.linkedin.com/showcase/isis-neutron-and-muon-source

Table: Kenneth A. LaBel, Thomas L. Turflinger; "Protons, Aerospace, and Electronics: A National Interest"

Scenario II

Delivers:

- Scenario I Neutrons
- Additional laboratory-based proton facility
- Proximity to neutron capability

	Advantage	Disadvantage
Neutrons	 design technically possible clear improvement on ChipIr lowest total cost (typical instrument cost) 	 more complex design (as part of target/reflector design)
Protons	 Provides UK capability Increased European provision 	 unknown design, particularly energy and flux control cost unknown; but likely to be on scale of neutron instrument temporal structure (pulsed beam)

Development Level: MEDIUM

Facilities Cour ISIS Neutron and

Muon Source

www.isis.stfc.ac.uk

💥 🖸 @isisneutronmuon

Scenario III

Abandon Scenarios I & II Exploit Proposed 500MeV Proton Beamline for Muons

Proposal to extract protons at 500MeV for Muon capability at end if Linac. Again could be driven by a proton pulse train interleaved with the H⁻ pulse train

... opportunity for combined facility?

ISIS Neutron and Muon Source

Science and

Technology Facilities Council

ISIS Neutron and Muon Source

ISIS Neutron and Muon Source

Combined Neutron, Proton (and Muons)

Scenario III

Advantage Disadvantage highest cost facility (as hall infrastructure design technically possible **Neutrons** • ٠ clear improvement on ChipIr required and neutron target costs) • simpler neutronic design ٠ potential for more flexible control of • flux/beams low cost beamline ٠ Provides UK capability unknown design, particularly energy and flux **Protons** • • Increased European provision control • potentially more flexible design cost unknown; but likely to be of similar scale • ٠ as typical beamline

Delivers:

Flexibility

•

•

ISIS Neutron and

Muon Source

www.isis.stfc.ac.uk

💥 👩 @isisneutronmuon

im uk.linkedin.com/showcase/isis-neutron-and-muon-source

Development Level: MEDIUM/HIGH

Points for discussion...

- Neutron beams: flux and pulse structure ٠
- Neutron beams: flux control + size ٠
- Neutron spectrum: maximum energy & < 10MeV ٠
- Thermal neutrons & Mono-energetic provision ٠
- Proton provision and requirements •

ISIS Neutron and Muon Source

www.isis.stfc.ac.uk

@isisneutronmuon \mathbb{X}