

Progress of Atmospheric Neutron Irradiation

Research at ANIS

Quanzhi Yu (于全芝)

qzhyu@iphy.ac.cn

¹Institute of Physics, Chinese Academy of Sciences, Beijing, China

²Spallation Neutron Source Science Center, Dongguan, China

This talk

- China Spallation Neutron Source (CSNS);
- Atmospheric Neutron Irradiation Spectrometer (ANIS);
- Progress of atmospheric neutron irradiation research at ANIS;

Pulse Spallation Neutron Source

CSNS ----I(100kW)&II(500kW)

Linac, 80 MeV@CSNS-I; 300 MeV@CSNS-I	Associated Proton Experimental Platform	Para.	I (2018)	II (2030)
		Power (kW)	100	500
	and a second of the second second	Proton (GeV)	1.6	
Target station &	RCS, 1.6 GeV proton, 100 kW 500 kW upgrade	Current (mA)	62.5	312.5
		Frequency (Hz)	25	
		Spallation target	Tungsten/tantalum	
	A second se	Moderator	CHM DWM DPHM	
		Reflector	Be/Fe	
		Beam port	20	
		Instrument	3 8	20+
Instruments Hall High-en	ergy Proton	Dose (mSv/h)	< 2.5	
Experin	nental Hall	Operation (h/y)	~5	000

Accelerator

GB-RADNEXT, June 12-13, 2024, RAL, UK

Target station

Provide cold and thermal neutron for 19+ instruments

■ Provide meV~GeV neutrons for 1 instrument

Wang F W, Liang T J., Yin W, et al., "Physical design of target station and neutron instruments for China Spallation Neutron Source", Sci. Chin. Phys. Mech. Astron. 56 (2013) 2410.

Instruments

CSNS operation

This talk

- China Spallation Neutron Source (CSNS);
- Atmospheric Neutron Irradiation Spectrometer (ANIS);
- Progress of atmospheric neutron irradiation research at ANIS;

Why ANIS was built at CSNS

Cosmic ray to N₂ and O₂ *GB-RADNEXT, June 12-13, 2024, RAL, UK*

1.6 GeV proton beam to tungsten target

Physical design for ANIS

Simulation: MCNP, PHITS, FLUKA, ORIHET, CINDER and their cross check, Design: cross design of physics and engineering, Characters: meV~GeV, flood and collimated beam spots, adjustable neutron flux. *GB-RADNEXT, June 12-13, 2024, RAL, UK*

Physical & engineering design

GB-RADNEXT, June 12-13, 2024, RAL, UK

1. Neutron beam control system: beam spots, flux, spectrum.

- 2. Beamline shielding: safety requirements.
- 3. Neutron measurement system.
- 4. Radiation effect test system: tables, lasers, PDU, electrical, cables, temperature.
- 5. System: vacuum, control, DAQ, PPS, utility.

ANIS at CSNS

ANIS outside target station, Feb. 2020. ANIS under construction, Mar. 2021. Construction completed, Dec. 2021.

Main characters of ANIS

Target view	ANIS views the front part of the W-Ta spallation target directly, at an angle of 41° from the
	incident proton beam.
Charged particles	Charged particles can be switched by a clearing magnet with a strength of 0.5 T, to allow the
	passage of or to deflect protons, pions, muons, and electrons.
Beam spectrum	The profile of the differential neutron spectrum matches well with the JEDEC standard spectrum. It
	has the white energy spectrum from meV to GeV, covering 12 decades of neutron energy.
Thermal neutrons	Selectable neutron filters allow tailoring of the neutron spectrum to satisfy the user's demands.
Collimated spots	Four collimated beam spots: 10 cm×10 cm, 5 cm×5 cm, 2.5 cm×2.5 cm and 1.0 cm×1.0 cm.
Flood spots	From 65 cm×65 cm continuously up to 80 cm×80 cm, and an individual 25 cm×25 cm beam spot.
Intensity	Can be increased by approximate 0.5 order of magnitude via flux controller, 10 ³ -10 ⁷ n/(cm ² s) for
	the collimated and flood beam spots.
Sample area	Irradiation room with 6 m (length) ×3 m (width) ×2.8 m (height).
	First sample position at ~20 m, with one XYZ translation table plus one-dimensional rotation for
	device testing and nuclear experiments.
	Second sample position at ~24.5 m, with one XYZ translation table for large system testing.
Beamline shielding	The dose rate is <2.5 µSv/h outside ANIS, satisfying the safety requirement according to the
	international standards of GB5172-1985 and GB18871-2002.

Yu Q, Shen F, Yuan L, et al. Physical design of an atmospheric neutron irradiation spectrometer at China spallation neutron source, Nuclear Engineering and Design, 2022, 386: 111579.

This talk

- China Spallation Neutron Source (CSNS);
- Atmospheric Neutron Irradiation Spectrometer (ANIS);
- Progress of atmospheric neutron irradiation research at ANIS;

Commissioning

> Components: Shutter, Flux controller, Collimator, Magnet, Filter, Doors, Tables, shielding...

- Systems: Vacuum, Safety, Control, Cooling, Electrical, Cables, DAQ, SEE test systems...
- > Neutron measurements: spectrum, flux, beam spot, dose rate, background...
- Verification: Charged particles, Photons, Thermal neutrons, Temperature, Multilayer IC boards... *GB-RADNEXT, June 12-13, 2024, RAL, UK*

Neutron measurement system

□ Neutron spectrum, neutron flux, beam spot, uniformity, background *GB-RADNEXT*, June 12-13, 2024, RAL, UK

Beam flux-FIC+Diamond detector

Time [s]

Collimated beam spot-GEM+DD

500

400

300

200

100

Counts

2D Imaging | Entries 1149813

Ę

GB-RADNEXT, June 12-13, 2024, RAL, UK

5cm×5cm

20

Flood beam spots-DD

Verifications-neutron flux-FPGA

Flux verification was performed by counting the soft errors with different neutron flux. The errors are linear with neutron flux as a whole.

Verifications-Thermal neutrons-FPGA

Verifications-Temperature-IGBT

https://link.cnki.net/urlid/11.2044.TL.20230822.1735.012

Verifications-multilayer IC boards

There are ~20% intensity decrease for 6 IC boards, mainly in the range from thermal to ~150 MeV. *GB-RADNEXT, June 12-13, 2024, RAL, UK*

Radiation effect-SiC MOSFET

Irradiation time (s)

Mo L, Yu Q, Hu Z, et al. Single event burnout of SiC MOSFET induced by atmospheric neutrons. Microelectronics Reliability, 2023, 146: 114997.

- An accelerator based neutron irradiation facility named as ANIS was built at CSNS, 2018-2022.
- ANIS is under scientific commissioning. Neutron measurements, verification experiments, neutron irradiation effects are in progress for universities, institutes and industries. Open operation is coming soon.
- □ **Cooperations are much expected.**

