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Laser acceleration

Different mechanisms at play, examples:
* Target Normal Sheath Acceleration for ions acceleration
* Wakefield for electron accelerations
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Laser facilities worldwide

T . Sparked by Chirped Pulse Amplification 2018 Physics Nobel prize
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Laser acceleration

Fast growing field, about 40 PW-scale facilities worldwide
In 20 years from zero to high technological readiness

Continuous technological development

Laserlab Europe network

Active and close community
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Laser acceleration features

Accelerated beam characteristics “driven” by laser features

Vacuum and cleanliness requirements
High-energy lasers propagate in vacuum, ~10° mbar
Cleanroom default ISO-7, 352,000 p(=0.5um)/m3

at times I1SO-5 is required
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Laser acceleration features

Accelerated beam characteristics “driven” by laser features

Pulse duration
As low as ~10 fs laser pulse: doesn’t mean 10 fs particle bunch
To take into account:

particle mass

passage from vacuum to air

transport in air

Still: dose rate per pulse can be very high



Laser acceleration features

Accelerated beam characteristics “driven” by laser features

Repetition rate
More energetic particles -
more powerful laser -
lower repetition rate
Nominal: 10 Hz for 1 PW laser, 1 Hz for >1 PW laser

kHz laser have achieved >100 MeV electrons



Angle

Laser accelerated electron beams

Beam characteristics different from conventional accelerators
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Laser accelerated proton beams

Beam characteristics different from conventional accelerators
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Laser acceleration features & limitations

Strong shot-to-shot variability (intensity and pointing)
Beams are not monochromatic (unless there is post-acceleration selection)

Transverse spatial distribution not shaped by the acceleration mechanism
as much as conventional accelerators

Large beam divergence (~tens of mrad)



Laser acceleration features & limitations

The laser acceleration mechanism is itself subject of research
— a large amount of experiments is designed to study it

The characterization of the radiation fields is “complicated”
The average energy and dose are low than in conventional accelerators

— ionizing radiation damage is not a priority
focus is on damage by ElectroMagnetic Pulses (EMPs)



Cultural distance

Laser community low awareness of ionizing radiation damage
(with some reasons)

RADNEXT survey on R2E at laser facilities
About 35 worldwide facilities contacted in spring 2023
Despite reminders, only three replies received

R2E community is also unaware of what laser driven beams can offer



Today, not all is dark

lonizing radiation damage awareness can be found:
ELI Beamlines, CLPU, HZDR

RADNEXT community performed the first experiments
Parasitic irradiation are feasible and “easy”

User calls are already available



The future is up for grabs

The laser world is growing:
new facilities are being built and planned
new user stations are being built and planned
beam parameters are improving

The laser community is receptive to new stimuli
and it’s eager to show its prowess in new fields

This is the right time to steer laser beams onto electronics



