Muon-induced Soft Errors in FinFET and Planar SRAMs

Masanori Hashimoto

Kyoto University hashimoto@i.kyoto-u.ac.jp https://vlsi.cce.i.kyoto-u.ac.jp/

Muon: potential source of soft error

Muon accounts for 70% of secondary particles on earth

Fig. Flux spectra from EXPACS: T. Sato et al., EXPACS, *Radia. Res.*, 166, 544-555, 2006

Decrease in critical charge

Deposited charge can exceed critical charge of modern devices!

Sensitive volume depth 0.5µm

Energy	dE/dx	Deposited Charge in 0.5µm
1GeV	0.47keV/µm	0.02fC
40KeV	73keV/µm	1.80fC

Increasing trend of muon impact

As Qc decreases, there is a possibility that muons will become dominant [2]

[2]: A. Infantino: TNS, 2017.

Neutron and muon in a concrete building

Concrete Room Air Detector

First floor

Previous works: muon-induced SEU

Positive muon: Experiments [1-4] 14nm,22nm, etc. Simulation [2,4] **Charge Generation** Ionization Ionizina

5

Impact of negative muon capture had not been studied in experiments.

[1],[2]: Sierawski et al., TNS, 2010 & IRPS, 2014,
[3]:Seifert: IRPS, 2015 [4]: S.Serre, RADECS, 2012 [5] :J. Dicello, Nucl. Inst. MPR, 1987

Experimental setup

Positive vs. negative muons in bulk

W. Liao, et al., "Measurement and Mechanism Investigation of Negative and Positive Muon-Induced Upsets in 65nm Bulk SRAMs," *IEEE Trans. Nuclear Science*, August 2018.

Charge amount induced by positive and negative muons PHITS simulation

W. Liao, et al., "Measurement and Mechanism Investigation of Negative and Positive Muon-Induced Upsets in 65nm Bulk SRAMs," *IEEE Trans. Nuclear Science*, August 2018.

Dependence of SEU cross section on ¹⁰ muon momentum

[Gomi, RADECS 2023]

Dependence of SEU cross section on ¹¹ supply voltage [Gomi, RADECS 2023]

 μ^{-} -induced SEU cross section on 12nm decreases as VDD elevates, different from 65nm.

Weaker contribution of parasitic bipolar effect

Comparison b/w 12nm FinFET and 28nm planar [Gomi, RADECS 2023]

Comparison b/w μ^- and neutron

[Gomi, RADECS 2023]

13

Similar reduction ratio from 28nm to 12nm

Similar secondary ions are causing SEUs

Conclusion and future direction

- Muons stopping near transistors cause SEUs.
- No increase to 12nm FinFET similar to neutrons

Need to know muon-**Obtained results** induced SEU cross section across all energy range 10-7 > [cm²/Mbit] 10-8 10⁻² < dseu eutron Flux @ Kyoto, Japan 10^{-9} proton 28nm positive 0 77 10-0 by EXPACS 4.13 Flux (cm²/s/lethargy) alpha 10-10 u+ 30 34 36 38 Momentum [MeV/c] 10-2 u-10-4 **No evaluation despite** 10-6 abundant muons 10-8 (even e⁻ can induce SEUs) 10-10 10⁻² 10-1 10^{0} 10¹ 10^{2} 10^{3} 10^{4} 105

Energy (MeV/n)

