ETH zürich

C. Martinella

Advanced Power Semiconductor Laboratory (APS), ETHZ, 8092 Zurich, Switzerland

Heavy-ion microbeam facility

Microbeam testing:

- Precise identification of radiation-sensitive regions in electronic components. Important information for the understanding of the basic mechanisms of single event effects (SEEs).
- The beam is magnetically focused to a spot size < 1 μm and scanned over the region of interest selected using an optical microscope.
- A channel electron multiplier discriminates the single hits detecting the secondary electrons emitted by the materials.
- Spatial location of charge collection (maps), prompt charge collection (fast transient systems), SEEs (SEU, SET, SEB, etc.), defects analysis.

Design the experiment:

- Size of the frame to irradiate
- Total amount of ions and distance in x-y directions
- Beam rate

A. Javanainen, "SEE testing with broad and focused particle beams" NSREC 2019 Short Course," University of Jyväskylä, Finland, Tech. Rep., 2019.

F. W. Sexton, "Microbeam studies of single-event effects," in *IEEE Trans. Nucl. Sci.*, vol. 43, no. 2, pp. 687-695, Apr. 1996.

G.J.F. Legge, "A history of ion microbeams," Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol.130, n. 1–4, pp. 9-19, 1997.

13/06/2024

Advantages of microbeam testing

Termination region

Precise identification of **radiation-sensitive regions** in the electronic device.

Gate structure

Unit cell layout

"Power Semiconductor" Lectures, Spring semester 2023, ETH course catalogue 227-0156-00L.

C. Martinella – GB-RADNEXT 2024

3

13/06/2024

GSI UNILAC microbeam facility

GSI UNILAC facility, Darmstadt, Germany

- Beam energy: ~5 MeV/amu
- Spot size FWHM: ~0.5 μm
- Area: 500 μm × 500 μm / 200 μm × 200 μm
- Distance between ions: 1 500 µm
- Beam rate: few Hz tens of Hz
- Fluence and x-y coordinates of the beam
- Test in vacuum

K O Voss et al 2008 New J. Phys. 10 075011.

A. Javanainen, "SEE testing with broad and focused particle beams" NSREC 2019 Short Course," University of Jyväskylä, Finland, Tech. Rep., 2019.

ANSTO microbeam facility

Contact Scientist: Dr Stefania Peracchi

<u>speraccii@alisto.gov.au</u>

NEXT ROUND DEADLINE: 30th August 2024

Z. Pastuovic *et al.*, "SIRIUS – A new 6 MV accelerator system for IBA and AMS at ANSTO", Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 371, Pages 142-147, Mar. 2016.

ANSTO facility, Sydney, Australia

- Two linear accelerators: 6 and 10 MV
- Two Heavy ion Nuclear Microprobe beamlines for SEEs testing
- Access:
 - Free Merit Access
 - Commercial Rapid and Proprietary
 - Collaborative

C. Martinella – GB-RADNEXT 2024 13/06/2024

Energies H

Flux

Fluence

Beam Current

Single ion regime

Beam spot in vacuum

Beam spot in air

Beam scan area

Stage scan area

Energies Heavy ions

100 µm² - 12 mm²

Up to 50 x 50 mm²

Up to **15 (20)** MeV

100 – 1000 particle/s

10⁴ – 10⁹ particles/cm².s

10⁴ – 10¹⁵ particles/cm²

Up to **120** MeV

pA to µA

0.5 – 1μm

10 µm

Microbeam for SEEs studies - I

Charge collection in Silicon Super-junction-power MOSFETs

 Three-dimensional maps of charge collection in Si SJ-MOS obtained with focused beams of different species, LETs, and ranges.

a SJ-MOS with multiple

Fig. 3. Cross-sectional view of SEE Ion mapping of a SJ-MOS with multiple locations, charge injection, -collection and areas of interest (drift region: SJ-n channel, SJ-p channel, BJT region).

Fig. 24. Superposed charge collection map for a 55 MeV Carbon mapping at 400 V on a microscope picture of frontside demetallized MOSFET with indication of the internal doping layout.

Fig. 17. Charge spectrum of SJ-MOS at 400 V, 55 MeV C, ion range $13\,\mu\text{m}.$

Fig. 18. $25\times25\,\mu m$ charge collection map of SJ-MOS at 400 V, 55 MeV C, ion range 13 $\mu m.$

M. Gerold *et al.*, "Sensitivity study of super-junction power MOSFETs by spatial and depth resolved heavy ion SEE mapping with various bias, LETs and ion ranges," *Microelectr. Reliab.*, Vol. 155, art. no. 115309, 2024.

Fig. 19. $25 \times 25 \ \mu\text{m}$ detected event count map of SJ-MOS at 400 V, 55 MeV C, ion range $13 \ \mu\text{m}$.

13/06/2024

Microbeam for SEEs studies - II

Spatial sensitivity of Single Event Leakage Current (SELC) in SiC power MOSFETs

- Ion-induced steps in the gate and drain leakage currents were analyzed as a function of the x-y coordinate within the scanned frame (945 MeV Au).
- Spatial periodicity of SELC, reflecting the striped structure of the power MOSFET investigated.
- Two different SELC mechanisms:
 - low drain-source bias in the gate-oxide region;
 - higher bias in the p-n junction region.

C. Martinella *et al.*, "Heavy-Ion Microbeam Studies of Single-Event Leakage Current Mechanism in SiC VD-MOSFETs," in *IEEE Trans. on Nucl. Sci.*, vol. 67, no. 7, pp. 1381-1389, July 2020.

13/06/2024

C. Martinella – GB-RADNEXT 2024

7

Microbeam for SEEs studies - III

Analysis of defects associated with SEEs in SiC power MOSFETs

- Investigation of defects related to SEEs:
 - Photoluminescence (PL) spectroscopy
 - Chatodoluminescence (CL) spectroscopy
 - Deep-level transient spectroscopy (DLTS)
 - Raman spectroscopy
 - X-ray topography (XRT)

C. Martinella *et al.*, "Photoluminescence analysis of heavy-ion-degraded SiC power MOSFETs". presented at ICSCRM 2023, Sorrento, Italy.

C. Martinella *et al.*, "Heavy-Ion-Induced Defects in Degraded SiC Power MOSFETs," MSF 2023;1090:179–84.

N. Für, M. Belanche, *et al.*, , "Investigation of Electrically Active Defects in SiC Power Diodes Caused by Heavy Ion Irradiation," in *IEEE Trans. Nucl. Sci.*, vol. 70, no. 8, pp. 1892-1899, Aug. 2023.

Microbeam for SEEs studies - IV

Failure analysis in SiC power MOSFETs – SEB, SEGR, post-irradiation failure

- Failure analysis:
 - Scanning electron microscopy (SEM)
 - Transmission electron microscopy (TEM)

C. Martinella *et al.*, "Heavy-ion induced single event effects and latent damages in SiC power MOSFETs," *Microelectron. Reliab.*, vol. 128, art. no. 114423, 2022.

FIB-SEM analysis of a failed SiC power MOSFETs (ScopeM, ETH Zurich)

Microbeam for SEEs studies – Additional literature

- J. A. Pellish *et al.*, "Heavy Ion Microbeam- and Broadbeam-Induced Transients in SiGe HBTs," in in *IEEE Trans. Nucl. Sci.*, vol. 56, no. 6, pp. 3078-3084, Dec. 2009.
- H. Toshio *et al., "*Studies on single-event phenomena using the heavy-ion microbeam at JAERI," Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Volume 210, pp. 227-231, 2003.
- A. Evans *et al.*, "Heavy-Ion Micro Beam and Simulation Study of a Flash-Based FPGA Microcontroller Implementation," in *IEEE Trans. Nucl. Sci.*, vol. 64, no. 1, pp. 504-511, Jan. 2017.
- H. Li, et al., "Heavy-Ion Microbeam Fault Injection into SRAM-Based FPGA Implementations of Cryptographic Circuits," in IEEE Trans. Nucl. Sci., vol. 62, no. 3, pp. 1341-1348, Jun. 2015.
- H. Sun *et al.*, "Study on Single Event Upsets in a 28 nm Technology Static Random Access Memory Device Based on Micro-Beam Irradiation" *Electronics* 2022, vol. 11, no. 20, art. no. 3413, 2022.
- W. Yang *et al.*, "Single-event-effect propagation investigation on nanoscale system on chip by applying heavy-ion microbeam and event tree analysis," NUCL SCI TECH 32, 106 (2021).
- W. Yang *et al.*, "Microbeam Heavy-Ion Single-Event Effect on Xilinx 28-nm System on Chip," in *IEEE Trans. Nucl. Sci.*, vol. 65, no. 1, pp. 545-549, Jan. 2018.

Microbeam facilities

Available microbeam facilities:

- RADNEXT webpage: <u>https://radnext.web.cern.ch/</u> (accessed June 10, 2024).
- A. Javanainen, "SEE testing with broad and focused particle beams" NSREC 2019 Short Course," University of Jyväskylä, Finland, Tech. Rep., 2019.
- CERN, CERN Facilities DB, (n.d.). <u>https://irradiation-facilities.web.cern.ch/</u> (accessed June 10, 2024).
- S. Martin Barbero, S.K. Höffgen, G. Berger, H. Guerrero, A. Koziukov, I. Tuzhikova, J. Pellish, P. Chubunov, P. Paillet, R. Ecoffet, V. Anashin, Compendium of International Irradiation Test Facilities, Moscow, 2015

Conclusions

- The ability to map regions sensitive to heavy-ion strikes makes the microbeam technique a valuable tool in the study of single event effects, providing important information for the understanding of the basic mechanisms not accessible with broad-beam testing.
- Microbeam testing allows spatial analysis of charge collection, prompt charge collection, SEEs (SEU, SET, SEB, SELC, etc.), and localized damage for defect spectroscopy, and failure analysis.
- Designing the experiment involves the choice of ion species and energy, dimensions of the irradiated frame, total amount of ions, distance among the ion-hits, frequency of irradiation. These parameters should be adjusted based on the technology under test to enable the best resolution.
- Further studies are needed to compare results from experiments with the broad-beam and microbeam.

Acknowledgements

Advanced Power Semiconductor Laboratory U. GrossnerN. FürM. BelancheH. Goncalves de MedeirosM. Nagel

A. Javanainen

S. Peracchi Z. Pastuovic R. Drury

Thanks for your attention!

Dr. Corinna Martinella Senior Scientist

martinella@aps.ee.ethz.ch

ETH Zurich Advanced Power Semiconductor Laboratory Physikstrasse 3 8092 Zurich, Switzerland

www.aps.ee.ethz.ch

