Nagoya University Nuclear Emulsion Facility Recent Activities and Prospects of Film Production

Hiroki ROKUJO (Nagoya Univ.)

Contents

- <u>Nagoya</u> <u>University</u> <u>Nuclear</u> <u>Emulsion</u> <u>Facility</u> (NUNEF)
 - Mission of NUNEF
 - Progress of mass production in recent 5 years.

• Latest R&Ds to improve the film production.

Why do we use emulsion? A: One and Only Vertex detector ν , had., e^{+–}, Nucl. **Cross section** (Electron microscopic view) ~60-70 µm Emulsion ~200 µm Plastic ~60-70 µm Emulsion

Why do we use emulsion? A: One and Only Vertex detector

function as 3-D position censors.

Evolution of Emulsion Scanning Speed and Decline of Photographic Film Industry

We decided to start the development and supply of Nuclear Emulsion itself in our laboratory (2010–)

Conception of Nagoya University Nuclear Emulsion Facility (NUNEF) since 2010 Emulsions will be v

illustrated by M.Nakamura

Emulsions will be widely utilized in a variety of fields.

Triun **Civil** 抵抗、約4-24 **Astronomy** Engineering M Geology M dark matter Archaeology **Nuclear Phys. Particle Phys.**

We welcome to use NUNEF to advance your research!!

Early situation In 2010, Introduction of Emulsion Gel Production System

Developing self-produced nuclear emulsion that satisfies our own research requirement.

Early situation (2013)

Upgrade of Film Production

Conventional method (手塗り)

Recent progress

Development of Hot Emu Automatic Coat Method Gel

plastic film

○シンプル

○液ロス少

○メンテナンス良

○水分量少ない塗布液

2021 May.- Recent progress Roll-to-roll emulsion film coating facility started practical operation (Real production in the dark)

Drying

achieved production speed of ~8 m²/day

Winding

Coating

Melting

Double-sided emulsion film after two processes

Recent progress

Total Film Area [m²]

We produced Nagoya emulsion film of ~3000 m² in total.

Recent R&Ds for Improvements of Emulsion/Film production

Studies on

- (1) increasing the gel production capacity
- (2) size-up of developing silver grains
- (3) new developer for size-up
- (4) improvement of R-to-R coating
- (5) protection layer coating

(1) Study on increasing gel production capacity

Current Nagoya-gel recipe (2010)

was standardized by Kuwabara, Naganawa et al. based on the results of OPERA film.

(1) Study on increasing gel production capacity

Current Nagoya-gel recipe (2010)

was standardized by Kuwabara, Naganawa et al. based on the results of OPERA film.

Development of new recipe

Number of AgBr

x 1.5

✓Crystal Formation(MT)
^b

by Ohzeki et al.

1st machine

Gel production capacity could increase by a factor of 1.5 or more in the future.

(2) Study on size-up of developing silver grains

One of the directions to achieve faster scanning speeds

is to increase the size of silver grains.

Larger silver grains

- \rightarrow increase the effective pixel size
- → larger field of view
 - (lower magnification)
- → Faster scanning

T. Ariga et al JINST 11 P03003 (2016).

Mass Production of Large-crystal emulsion films in NUNEF

Changing and tuning the conditions of temperature in the crystals formation process, and sedimentation(沈降) in deionizing process

Typical (240nm)

Large(320nm)

Tuning viscosity with the addition of thickener for adapting to R-to-R coating

NUNEF achieved the stable mass production of large crystal emulsion films(~500 m²) for NINJA 2023 run.

Solution Physical Development

GRAINE 2023 Balloon Experiment Photo Development of Recovered Films in JPN

(4) Study on improvement of R-to-R coating

Pumping gel by air pump

by Iwamoto et al.

To avoid ethanol contamination, placing a tube in the bottom of a bottle, pressurizing it with an air pump, and pumping the gel to the knife coater

→Improved the flatness of surface

Addition of antifoam

by Sugimura et al.

Mixing antifoam (DAWSILTM FS Antifoam 93) into emulsion gel without ethanol.

→ Improved the flatness of surface
 → suppressing the bubble contamination
 Chemical reaction test of antifoam
 is under studying

These methods expected to be improve the distortion of emulsion layers. (would be evaluated.)

(5) Study on Protection-layer Coating (PC)

Aim: To cut/reduce labor of removing surface silver.

How to Make Film with PC

Many try & errors to search for good conditions

- Gelatin solution (amount, concentration, temperature, additives
- Drying condition (temperature, duration)
- Separator (material, insert/rewind method)

Emulsion Coat(A)→Protection Coat(A)→Emulsion Coat(B)→Protection Coat(B)

"Quadruple-pass coating"

Results of "Quadruple-pass coating"

Succeeded in significantly preventing surface silver Removed fractions are 86% and 95% for surf A and B.

by Shimizu et al.

However, there are still many troubles and difficulties in this process...

- **"Reproducibility**" Difficulty in stable coating & drying conditions
- Strong silver appeared on surface.

"Adhesion problems"

 (agent for separation マット剤 required)

Further study is needed for PC!!

"Reticulation" structure after refreshing

Summary

- Nagoya University Nuclear Emulsion Facility (NUNEF)
 - is aiming at;
 - Build-up and maintenance of a total system of emulsions
 - Function as the world's hosting center for emulsion technology
- Production capacity have been greatly upgraded in recent 5 y.
 - gel production and RtR coater
- Recent R&Ds
 - (1) increasing the gel production capacity
 - (2) size-up of developing silver grains
 - (3) new developer for size-up
 - (4) improvement of R-to-R coating
 - (5) protection layer coating

• We welcome to use NUNEF to advance your research!!