Study of chemical composition of cosmic ray nuclei with GRAINE experiments

Atsushi lyono ${ }^{1}$ for the GRAINE collaboration ${ }^{1,2,3,4,5,6}$

1. Dept. of Fundamental Science, Okayama University of Science,
2. Institute of Materials and systems for sustainability, Nagoya University,
3. Graduate School of Human Development and Environment, Kobe University,
4. Dept. of Physics, Nagoya University
5. Aichi University of Education and 6 ISAS/JAXA

Email:iyono.ats@ous.ac.jp
ICMaSS2021 @ Nagoya Univ. In 2023/12/2

GRAINE project (Gamma Ray Astro-Imager with Nuclear Emulsion)

-Concept of Balloon borne emulsion gamma ray telescope

- Main Purpose :

Imaging of cosmic gamma ray objects with high angular resolutions of nuclear emulsion films
-Balloon Flight
2011 Hokkaido
$20152^{\text {nd }}$ balloon flight @ Australia
2018 April balloon flight @ Australia 17.4hour, 0.38m² 2023 April-May @ Australia 24hour 2.5m²

Composite image of two emulsion layers(1300um ×685um) A1-P-3 杉君

- Energy spectra and chemical composition measurements
- JACEE/RUNJOB utilized ECC type detectors to measure primary energies in calorimeters because interaction length and absorption length were needed above TeV energies.
- The recent progress of Nuclear Emulsion Technologies including HTS
- Allows to carry out general scanning of nuclear emulsion films with wide angular acceptance.
\Rightarrow Direct measurement of cosmic ray nuclei above the GeV energies is the one of the next aim in the GRAINE project to study the chemical composition of cosmic ray nuclei because of it large aperture area.

Figure 30.2: Cosmic ray elemental abundances compared to abundances in present-day solar system material. Abundances are normalised to $\mathrm{Si}=10^{3}$. Cosmic ray abundances are from AMS-02 $(\mathrm{H}, \mathrm{He})[3,17]$, ACE/CRIS (Li-Ni) [18,19], and TIGER/SuperTIGER (Cu-Zr) [20,21]. Solar system abundances are from Table 6 of Ref. [22].

The r-process and s-process

Burbidge, Burbidge, Fowler, Hoyle (1957), Cameron (1957):
The heavy elements $(A>62)$ are formed by neutron capture onto seed nuclei

Burbidge, Burbidge, Fowler, Hoyle ("B2FH")

Modern Physics

Volume 29, Number 4	October, 1957

Synthesis of the Elements in Stars*

e. Margarbt Burbidae, G. R. Burbidge, William A. Fowler, and F. Hoyle

Kellogg Radiation Laboratory, Colifornia Institute of Technology, and
Mount Wilson and Palomar Observatories, Carnegie Institution of Washinglon,
California Instituite of Technology, Pasadena, California
"It is the stars, The stars above us, govern our conditions";
t perhaps
"The fault, dear Brutus, is not in our stars, But in ourselves," (Julius Coesar, Act I, Scene 2)
table of Contents

Cameron
speculated that r-process requires explosive environment of supernovae

The origin of the elements

How are the heavy elements formed?

18 Source of heavy r-process nuclei: SNe VS BNSM

- Recent measurement of ${ }_{60} \mathrm{Fe}$ (radioactive with half-life 2.6 Myr) by the ACE-CRIS experiment is the first conclusive evidence that there is a recently synthesized component in the cosmic rays
- The ${ }_{60} \mathrm{Fe}$ almost certainly comes from SNe from nearby Sco-Cen OB associations
W. R. Binns et al., Science 10.1126 (2016)

- If SNe synthesize and accelerate all of the r-process nuclei
- expect to see significant numbers of the short lived ${ }_{94} \mathrm{Pu}$ and ${ }_{96} \mathrm{Cm}$
- If binary neutron star mergers (BNSM) are the source of the heavy r-process nuclei
- expect to see little or no ${ }_{94} \mathrm{Pu}$ and ${ }_{96} \mathrm{Cm}$ since BNSM in the vicinity of the solar system are much less frequent than SNe and the short lived ${ }_{94} \mathrm{Pu}$ and ${ }_{96} \mathrm{Cm}$ should have mostly decayed

Short lived
$\mathrm{Pu}(Z=94, A=244)$
Cm(Z=96,A=247)
Predictions:
SNe->significant number
BNSM->little or no

Cosmic ray nuclei measurements in GRAINE2023

－The Goal of this study：
－To measure cosmic ray nuclei（CRN）in conventional eye－scan method in order to collect training data for machine learning of track recognition．

＝＞ 100 CRN tracks

－Test scanning data：
－Image data in 3cm x 3cm region of one GRAINE2023 flight film obtained by HTS2．

Figure 30．2：Cosmic ray elemental abundances compared to abundances in present－day solar system material．Abundances are normalised to $\mathrm{Si}=10^{3}$ ．Cosmic ray abundances are from AMS－02 $(\mathrm{H}, \mathrm{He})[3,17], \mathrm{ACE} / \mathrm{CRIS}(\mathrm{Li}-\mathrm{Ni})[18,19]$ ，and TIGER／SuperTIGER（Cu－Zr）［20，21］．Solar system abundances are from Table 6 of Ref．［22］．

GRAINE2023 9cm^2スキャン	H	He	Li	Be	B	C	N	24時間•2sr
10～100GeV	16500	2625	16.5	6.6	21	66	21	$3 \mathrm{~cm} \times 3 \mathrm{~cm}$ スキャン
100～1TevV	367.5	57.75	0.375	0.15	0.45	1.425	0.45	

Nuclear emulsion film Images obtained by HTS2 system

						vx	-			
(26,0)	(25,0)	(24,0)	(23,0)				$(3,0)$	$(2,0)$	(1,0)	(0,0)
$(26,1)$	$(25,1)$	$(24,1)$						$(2,1)$	$(1,1)$	(0,1)
$(26,2)$	$(25,2)$								$(1,2)$	$(0,2)$
$(26,3)$										$(0,3)$
(26,51)										(0,51)
$(26,52)$	$(25,52)$								$(1,52)$	$(0,52)$
(26,53)	$(25,53)$	$(24,53)$						(2) 53)	$(1,53)$	$(0,53)$
$(26,54)$	$(25,54)$	$(24,54)$	$(23,54)$				$(3,51)$	$(2,54)$	$(1,54)$	$(0,54)$

Region and areas of emulsion images in this analysis

Object lens

70umEm

Lens side
200um base
70umEm
Stage side

- Scan region : $3 \mathrm{c} \mathrm{m} \times 3 \mathrm{~cm}$
- Image area label: $V X: 0 \sim 26 \quad \mathrm{VY}: 0 \sim 54$
- Number of area: $27 \times 55=1485$
- One single image scanned by HTS2
- Width:2048 pixel Height : 1088 pixel
- Real image size : 1290 um $\times 685 u m$
- Image format: gray scale (png format)
- Image area non overlapped $: V X=1170 u m \quad V Y=560 u m$
- Z gap = 4um ->24 slices/emulsion layer
- Pixel resolution:

VX7VY0	VX6VY0	
		overlapped regin 190 pixel $=120 \mathrm{um}$
VX7VY1		

- 1290um / 2048pixel $=685$ um / 1088pixel $=0.63 u m$

Method of conventional eye-scan

Example of

 composite image.Other 20 examples are shown in the following slides.

- Raw images for both side emulsion layers : 24 slices $\times 2=48$
- Composite images in both layer (24 slices $\times 2$) at each area are created by means of multifocal imaging algorithm (poster presented by Sugi-kun). The depth information of grains is stored in the other images.

70um Em

Lens side 200um base

70 umEm
1290um

Summary

- We are going to analyze GRINE2023 emulsion images in order to obtain tracks of cosmic ray nuclei.
- In this eye-scan, 283/500 CRN tracks could be found in $3 \mathrm{~cm} \times 3 \mathrm{~cm}$ region. Feature measurements of each track such as track width, PHV etc., are on-going now.
- These CRN images are used for training data of machine learning algorithm to automatically recognize CRN tracks in emulsion images.
- We are going to extend image region from $3 \mathrm{~cm} \times 3 \mathrm{~cm}$ to $10 \mathrm{~cm} x$ 10 cm for this image analysis. $\sim 1 \mathrm{~TB}$

