

Precise measurement of binding energies of hypernuclei on nuclear emulsion with machine learning

Manami Nakagawa
¹RIKEN, High Energy Nuclear Physics Lab.

A. Kasagi^{1,11}, Y. He^{1,3}, S. Sugimoto^{1,4}, W. Dou⁴, V. Drozd⁵, H. Ekawa¹, S. Escrig^{1,6}, Y. Gao^{1,7,8}, E. Liu^{1,7,8}, A. Muneem⁹, K. Nakazawa^{1,2}, C. Rappold⁵, N. Saito¹, T. R. Saito^{1,10}, M. Taki¹¹, Y. K. Tanaka¹, H. Wang¹, A. Yanai^{1,4}, J. Yoshida¹², M. Yoshimoto¹³.

²Gifu University, ³Lanzhou University, ⁴Saitama University, ⁵University of Groningen, ⁶Instituto de Estructura de la Materia, CSIC-Madrid, ⁷Institute of Modern Physics, CAS, ⁸University of Chinese Academy of Sciences, ⁹Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, ¹⁰GSI, ¹¹Rikkyo University, ¹²Tohoku University, ¹³Nishina Center, RIKEN

Contents

- Introduction
- Nuclear emulsion & Machine learning
- Hypernuclear search
- Summary

Introduction

- Origin of heavier elements than iron
 - Heavy element production by Neutron star merger
 - Necessary to understand the interior structure of neutron stars

- It is expected that hyperons exist in neutron stars
- → Important to study **hypernuclei**, which are nuclei with hyperons

Hypernuclear physics

- s u
- charge $-\frac{1}{3}e$ $+\frac{2}{3}e$ 3rd b t

 bottom top

 2nd s c

 strange charm

 1st d u

down

up

- Hypernucleus
 - Hyperon
 - nucleon with strange quark
 - Nucleus with hyperon

Discovery of hypernuclei

M. Danysz and J. Pniewki, Phil. Mag. 44, 348(1953)

Hypertriton puzzle

- The simplest hypernuclear system, ³, H
 - a benchmark in hypernuclear physics

Binding energy

deuteron

neutron

proton

 $^3\Lambda$ H

~10 fm

Can be different from conventional interpretation

→ Precise measurement is necessary

Our approach: Nuclear emulsion & State-of-the-art technology

J-PARC E07 Nuclear emulsion

thin-type sheet 180 480 480 480 emulsion layer base film thin-type sheet 11 thick-type sheets thin-type sheet [um]

Feature

– size of AgBr crystal: 0.2μm

weight ratio of Ag to gelatin: 3.16

- density: 3.53 g/cm³

- track density: 10⁶ tracks/cm²

Hypernuclei recorded

- millions of single strangess hypernuclei

- thousand double strangeness hypercnulei

microscope

100 μm

 \sim 1300 emulsion sheets

Data size: 140 PB

Background: 10^{10} events Eye check: \sim 560 years

Machine learning

Hypertriton detection

Detection is suitable for machine learning, but no training data→ Create images from physics simulations

Production of Simulated Image Convert image by GAN

Color = depth to reproduce defocusing

- Generative Adversarial Networks (GAN)
 - Train Generator and Discriminator simultaneously

arXiv:1406.2661

- pix2pix Model is applied
 - Image style transformation

arXiv:1611.07004

Production of Simulated Image Convert image by GAN

- Generative Adversarial Networks (GAN)
 - Train Generator and Discriminator simultaneously

arXiv:1406.2661

- pix2pix Model is applied
 - Image style transformation

arXiv:1611.07004

³ H event detection using object detection

Mask R-CNN Object detection model arXiv:1703.06870

* Track length resolution is too low to make bias of binding energy

Detection

 Detection with trained model

Published
A. Kasagi, et al.,
NIM A, 1056 (2023) 168663

• Examples of detected hypernuclear events

Detected 1075 events Identified 183 events in 0.55% of entire data

2023. Aug.

³_^H event observation

T.R. Saito, et al., Nat Rev Phys 3, 803-813 (2021).

Current observations

2023. Aug.

 ${}^{3}_{\Lambda}H:37, {}^{4}_{\Lambda}H:146$

400 events \rightarrow 30keV(stat.), 30keV(sys.)

E. Liu, et al., Eur. Phys. J. A (2021) 57:327

Automation by Reinforcement Learning

- Automatic tracking of π track
 - π track is too thin to tackby image analysis
 - ~ 6 hours / π track by human eyes

- Automatic tracking of α track
 - For momentum calibration
 - -~400 α/ 1 day/ hypernuclear eventby human hands

Reinforcement learning

Overview

- One of three categories of machine leaning technique
- Learn to Maximize total reward
 - like how a baby learns
- Game playing is applied mainly
- Suitable to optimize a route

Cleaning robot plans a route

Automation by Reinforcement Learning

- Automatic tracking of π track
 - π track is too thin to tackby image analysis
 - ~ 6 hours / π track by human eyes

- Automatic tracking of α track
 - For momentum calibration
 - -~400 α/ 1 day/ hypernuclear eventby human hands

Single hypernuclear search

- Three-body (mesonic) decay as a first step
 - Many hypernuclei decay with many-body final states
 - Especially ${}^3_{\Lambda}$ H, ${}^4_{\Lambda}$ H & ${}^4_{\Lambda}$ He
 - ³_^H : Comparison with 2-body decay
 - ⁴_^H : Comparison with 2-body decay
 - ⁴ _^He: Only old emulsion data

0.01% of entire data in 2023 Mar.

12 solutions remain...

1.
$$^{8}_{\Lambda}$$
He \rightarrow 6 He + d + π^{-}

2.
$${}_{\Lambda}^{5}\text{H} \rightarrow p + p + \pi^{-} + 3n$$

Double hypernuclear search

- Double hypernuclear event
 - Observe new double hypernuclei
 - Increase statistics of known double hypernuclei
- ⁶_{^^}He detection as a first step

KEK E373 experiment H. Takahashi *et al.* Phys. Rev. Lett. **87**, 212502 (2001)

produced by Ξ- capture

Searched region:

0.03% of entire data in 2023 Mar.

→ 0.2% currently searched in 2023 Aug. but no other clear event observed yet

Future experiments at J-PARC

- Binding energy of ¹²_ΛC
 @ stopped K⁻
 - Shifted binding energy was used for calibrations in a long time
 - Accuracy was poor in old emulsion exp.
 - Remeasure binding energy of
 C by emulsion

- Binding energy & Level structure of ∧ hypernuclei
 - Tag by emulsion
 - Coincidence with SSD

Machine learning allows us to find events by emulsion only

Summary & Perspective

- Precise binding energy measurement of hypernuclei
 - To solve hypertriton puzzle
- Nuclear emulsion
 - For J-PARC E07 experiment
 - Overall scan of whole data
- Machine learning
 - Simulated image production by Geant4 + GAN
 - Object detection as event detection
- On-going search
 - Two-body decay (at rest) of ${}^3_{\Lambda}H \& {}^4_{\Lambda}H$
 - Single hypernuclear search
 - Double hypernuclear search
- → We will provide precise binding energies of various hypernuclei