Digital Archives for Nuclear Emulsion Data
 - past experiments in cosmic-ray and accelerator physics -

- HTS runs at $\sim 0.5 \mathrm{~m}^{2} / \mathrm{h}$ read-out speed.
- All tracks in past experiments' emulsion can be read-out. for minimum bias re-analysis.
Share those emulsion data for educational use etc. \rightarrow Digital Archives
- Emulsion plates read-out by HTS so far are ...
- All two blocks of RUNJOB 1997 flight
- Part of top 9 plates of JACEE-13 (Antarctic circumpolar fight in 1994)
- 1 module of DONUT (neutrino experiment)

This presentation

```
K. Kodama : Aichi Univ. of Edication
    M. Ichimura : Hirosaki Univ.
    M. Nakamura : Nagoya Univ.
```


NETSCAN data obtained so far

- RUNJOB
- Two blocks of 1997 flight ($16.4 \mathrm{~m}^{2}$) were read-out.
- Total 10 flight campaigns (20 blocks) had been done.
- Slips among emulsion plates were observed.
- JACEE-13 (Antarctic flight)
- $1 / 4$ of upper 9 plates $\left(0.45 \mathrm{~m}^{2}\right)$ were read-out.
- No slip observed.
- DONUT
- Module \#1 ($11.5 \mathrm{~m}^{2}$, largest v Interactions expected) were read-out.
- Total 7 modules were exposed to neutrino beam at Fermilab.

RUNJOB
 RUssia-Nippon JOint Balloon-program

- 10 successful flights (1995~1997,1999)

Each flight was ~ 140 hours at mean altitude of $\sim 10 \mathrm{~g} / \mathrm{cm}^{2}(30 \sim 35 \mathrm{~km})$

- HTS scanning done for 2 blocks of 1997 flight.

Microscope view of a RUNJOB emulsion plate

$\sim 0.7 \mathrm{~mm}$

Selected vertices/interactions in RUNJOB target module

JACEE

Japanese-American Cooperative Emulsion Experiment

JACEE-13(1994) is Antarctic circumpolar flight
This flight was intended to study high energy cosmic ray flux. It would be interesting to observe low energy anti-protons, because of low rigidity cut off of this flight.

```
https://stratocat.com.ar/fichas-e/1994/MCM-19941221.htm
```


Anihilation of an anti-proton in emulsion

The Study of Elementary Particles by the Photographic Method Powell, Fowler and Perkins

Microscope view of a JACEE-13 emulsion plate

Selected vertices in JACEE-13 data

Look into 9 emulsion plates of $25 \mathrm{~cm} \times 20 \mathrm{~cm}$ size

 2.1×10^{4} vertex candidates

Summary of v beam exposures in DONUT

3.54×10^{17} protons of $800 \mathrm{GeV} / \mathrm{c}$ were used to create neutrino beam and exposed to emulsion targets

Table 1
Information about the exposed emulsion modules

Module	Composition	$\begin{aligned} & \text { Mass } \\ & (\mathrm{kg}) \end{aligned}$	$\begin{aligned} & n_{\mathrm{POT}} \\ & \times 10^{16} \end{aligned}$	Expected v events
$\bmod 1$	ECC200 $\times 47$	104	20.1	236
$\bmod 2$	ECC800 $\times 19+$ Bulk $\times 38$	70	25.8	$20{ }^{\circ}$
$\bmod 3$	ECC200 $\times 47$	104	9.8	115
$\bmod 4$	$\begin{aligned} & \text { ECC } 200 \times 2+\text { ECC } 800 \times 7 \\ & + \text { Bulk } \times 47 \end{aligned}$	70	14.7	115
$\bmod 5$	ECC800 $\times 21+$ Bulk $\times 30$	71	15.5	124
$\bmod 7$	ECC800 $\times 20+$ Bulk $\times 32$	70	25.8	203
$\bmod 8$	Bulk $\times 87$	60	15.5	105
Total				1100

MicroTrack Read-out

MicroTrack density $=1.6 \times 10^{6} / \mathrm{cm}^{2}$

Position and angle difference of any two MicroTracks

MicroTrack, DONUT mod-01 pl048 face=1 ph ≥ 7 (test scan)

BaseTrack production

BaseTrack condition
 $$
\Delta \theta \leq 0.06+0.01 \times \theta_{\text {base }} \text { where } \Delta \theta=a b s\left(\theta_{\text {micro }}-\theta_{\text {base }}\right)
$$

BaseTrack, DONUT mod-01 pl048 ph ≥ 7 (test scan)

BaseTrack angle distibution

BaseTrack, DONUT mod-01 pl048 ph 27 (test scan)

Positon alignment between plates

BaseTrack recognition efficiency

DONUT mod-01 pl47 (test scan)

24 HTS scan data were joined to read-out one plate

21	22	23	24
17	18	19	20
13	14	15	16
09	10	11	12
05	06	07	08
01	02	03	04

DONUT plate
 $500 \mathrm{~mm} \times 500 \mathrm{~mm}$

24 HTS scan areas were needed to read-out one emulsion plate. $\sim 5 \mathrm{~mm}$ overlap between scan areas

BaseTrack position distribution of one emulsion plate ($50 \mathrm{~cm} \times 50 \mathrm{~cm}$ in DONUT)

BaseTrack, DONUT mod-01 pl045 ph ≥ 7

Linklet

- a pair of BaseTracks connected on two plates -

Linklet between pl045 and pl046

Track reconstruction and vertex search

group \Rightarrow chain $\Rightarrow m$-file \Rightarrow vertex

1. BaseTrack: $1.5 \times 10^{3} / \mathrm{mm}^{2}, 3.6 \times 10^{8}$ tracks/plate
2. Linklet: $0.5 \times 10^{3} / \mathrm{mm}^{2}, 1.3 \times 10^{8}$ linklets/plate-pair (1x)
3. Group : total 0.45×10^{6} Groups, 14.8 tracks/Group
4. Chain : 13.2 chains/group, total 6.0×10^{9} Chains

- make Chains for Groups with $<1 \times 10^{6}$ tracks

5. M-file of largest chains in each Group only.

- Reject passed-through (tusukinuke) tracks.
- definition : $d x y=100 \mu \mathrm{~m}, \mathrm{dz}=1$ plate

6. Pickup vertex candidates.
ttv : same-plate, $\mathrm{dr}<3 \mu \mathrm{~m}, \mathrm{dt}>20 \mathrm{mrad}, 0<\mathrm{dz}<2.3 \mathrm{~mm}$

- vtx : bin-volume $=20 \times 20 \times 100 \mu \mathrm{~m}$, \#-of-ttv>10

Track reconstruction and vertex search

group \Rightarrow chain \Rightarrow m-file \Rightarrow vertex

1. BaseTrack: $1.5 \times 10^{3} / \mathrm{mm}^{2}, 3.6 \times 10^{8}$ tracks/plate
2. Linklet: $0.5 \times 10^{3} / \mathrm{mm}^{2}, 1.3 \times 10^{8}$ linklets/plate-pair (1x)
3. Group : total 0.45×10^{6} Groups, 14.8 tracks/Group
4. Chain : 13.2 chains/group, total 6.0×10^{9} Chains

- make Chains for Groups with $<1 \times 10^{6}$ tracks

5. M-file of largest chains in each Group only.

- Reject passed-through (tusukinuke) tracks.
- definition : $d x y=100 \mu \mathrm{~m}, \mathrm{dz}=1$ plate

6. Pickup vertex candidates.

- ttv : same-plate, $\mathrm{dr}<3 \mu \mathrm{~m}, \mathrm{dt}>20 \mathrm{mrad}, 0<\mathrm{dz}<2.3 \mathrm{~mm}$
- vtx : bin-volume $=20 \times 20 \times 100 \mu \mathrm{~m}$, \#-of-ttv>10

Selected vertex candidates

$62.1 \mathrm{~mm}<\mathrm{vz}<63.5 \mathrm{~mm}$ (between pl047 and pl048) ... still preliminary

Summary

- Full surface read-out of all emulsions in past experiments is being possible.
- It will be valuable to read out emulsions in past experiments and make them public in some way, such as a Digital Archives of emulsion data.
- Minimum bias re-analysis for physics purpose.
- Real data for educational use.
- Data obtained so far ...
= All two blocks of RUNJOB 1997 flight ($16.4 \mathrm{~m}^{2}$)
- Part of JACEE-13 flight ($0.45 \mathrm{~m}^{2}$)

1 module of DONUT ($11.5 \mathrm{~m}^{2}$)

