Detection gamma-ray from laser plasma using nuclear emulsion
 Ryota Iwasaki Osaka University, Japan

 RIKEN, 9 INFN, Sezione di Milano

1.Abstract

Achievable focusing intensity of laser is increasing \rightarrow The energy emitted from the laser plasma is also increasing

Nuclear reaction are within experimental reach

Clarify the occurrence of nuclear reactions
\rightarrow Measurement of gamma-rays emitted from laser plasma to clarify
the generation mechanism

- Challenging to measure γ-ray with detectors such as scintillator
\rightarrow Requires a different detector
\rightarrow Nuclear Emulsion
(gamma-ray determined from the electron
and positron tracks of pair production)
\rightarrow More resistant to pile-up than detectors
such as scintillators

2.What is the Emulsion?

Nuclear Emulsion

\rightarrow A type of photographic film, a detector that has long been used in particle experiments

Feature

- High spatial resolution
(The size of the silver halide crystals determines this resolution) (200 nm)

3.Experimental Setup

Facility

J-KAREN-P of the Kansai Photon Science Institute, QST
(The achievable focusing intensity in QST is about $\left.10^{21-22} \mathrm{~W} / \mathrm{cm}^{2}\right)$

Performance of the laser

30 fs at a focusing intensity of $10^{21} \mathrm{~W} / \mathrm{cm}^{2}$
on $5 \mu \mathrm{~m} \mathrm{Ag}$ target

Location of Emulsion

Emulsion is attached to the wall of the vacuum chamber
\rightarrow One set of 30 emulsions +2 CSs were installed at two locations

7.Momentum calculation

Calculation Method
multiple electromagnetic scattering methods
$(\delta \theta)_{\text {RUS }}=\frac{13.6 \mathrm{MeV}}{\beta c p} \sqrt{x / \mathrm{Xo}}[1+0.038 \ln (x / \mathrm{Xo})]$
$\delta \theta$: measured value, $\quad \mathrm{x}=0.005 \mathrm{Xo}$

Momentum error		
Ev27840	44 ± 12	
Ev29565	75 ± 20	
Ev40964	46 ± 12	
Ev73020	$39 \pm 10 \quad(M e V)$	

8.Arrival direction of gamma-ray

RCNP

NAGOYA gifu university University

4.Measurement

Necessary to adjust the amount of incident particles \rightarrow many incident charged particles analysis difficult. Adjustment of the distance from the target Material of the object between the target and the emulsion

Adjustment of the number of laser shots
Maximize the d
Perform entions

- Accuracy of about $\tan \theta \leq 0.2$

How to install emulsions
\rightarrow Good to have a high degree of freedom (self-made)
How to store emulsions
\rightarrow Keep perpendicular to the ground.

5.Scan and Analysis

HTS (Hyper-track selector nuclear emulsion readout system)

Procedure

Measurement(KPSI,QST)
\rightarrow Development(Gifu University)
\rightarrow Swelling(Nagoya University)
\rightarrow scanning(Nagoya University)
Calculate the detection efficiency in a single film of emulsion

6.Search for gamma-ray pair production

Search for charged particle trails that are generated along the way in the emulsion stack.

9.Conclusion, Future prospect

$.4 \gamma$-ray pair production events identified in this experiment ($40 \sim 70 \mathrm{MeV}$)
Calculate the Flux of γ-ray
$\rightarrow 7.1 \times 10^{2}\left(/ \mathrm{cm}^{2} /\right.$ shot $)$ (Approximate distance between target and emulsion is 1 m

```
        ->Emulsion can detect }\gamma\mathrm{ -ray in this flux
```

Arrival direction indicates
\rightarrow Electron-positron pair event comes from the vacuum chamber

- Approximate target position

$\rightarrow 4$ event are not from target
\rightarrow Secondary bremsstrahlu
vacuum chamber
Really want to see is bremsstrahlung coming directly from the
target

Reference

Hyper-track selector nuclear emulsion readout system Hyper-track selector nuclear emulsion readout system
aimed at scanning an area of one thousand square meters

- Masahiro Yoshimoto, Toshiyuki Nakano, Ryosuke Komatani, and
- In this experiment, we succeeded in confirming the pair production of γ-rays using emulsions (4event in $7.1 \times 1 \times 10^{2}\left(/ \mathrm{cm}^{2} /\right.$ shot $\left.)\right)$ $10^{2} /\left(\mathrm{cm}^{2} /\right.$ shot $)$
It could be
laser plasma
laser plasma
- The emulsion was placed outside the vacuum chamber
$\rightarrow \gamma$-rays coming directly from the target could not te $\rightarrow \underset{\rightarrow \text {-rems coming directly from the target could not be detected }}{ }$ \rightarrow Bremsstrahlung from the wall of the vacuum chamber was detected this time

1. Alowing emulions to be installed in the vacuum
 chamber
 2. Changing the flange of the vacuum chamber so that the amount of material between the target and the emusion is amount of material between the target and the emulsion is

 $\xrightarrow[\rightarrow C]{\text { smaller }}$- The track-finding efficiency in the low-energy band of emulsions has not yet been studied in detail $\underset{\substack{\rightarrow \text { At weak energies, the track shakes a lot and the efficiency } \\ \text { falls off }}}{ }$ falls off

