

Office of Science

Recent results relevant for PDFs at low and high x, saturation in pp and HI collisions from CMS Georgios K Krintiras Diffraction and Low-x 2024

KU

PDF precision

Eur. Phys. J. C 84 (2024) 842

- Many $2 \rightarrow 1$ processes available at N³ LO QCD
- PDF+ α_s uncertainties bottleneck for LHC precision
- Nontrivial differences in PDF sets

PDF phenomenology

N. Laurenti (ICHEP 2024)

- *a*N³ LO QCD PDFs become available
- QED effects comparable to *aN³* LO QCD corrections
- To constrain gluons: heavy-quark and jet production

Differential tt production

JHEP 05 (2024) 321

- PDF sets describe tt data reasonably well
- Clear trend at high y (large x)

Global fits with top quark data

- Improvements when including tt and single t data
- Differences at high x among global fits persist

Dijet topologies

2312.16669

● Disentangling regions of different *x* → PDF fits

2D&3D dijet cross sections

- Predictions for different PDFs in agreement with each other
- Better description for R = 0.8 than 0.4 anti- k_{τ} jets

Constraints to large-x gluons

- gluon PDF uncertainty halved at x > 0.1
- 2D & 3D fits largely compatible

Comparison to inclusive jet production

- Comparable in precision
- In good agreement, also with the world average

Inclusive jet production at 5.02 TeV

2401.11355

- Complementary measurement at lower \sqrt{s}
- Studied for NLO & NNLO pQCD, diferent PDFs and $\mu_{R,F}$
- Can be used as an input to future QCD fits

Energy correlators inside jets

- EEC sensitive to energy flow (here both charged and neutrals)
- x_L distribution sensitive to time scale of hadron formation
- E3C/E2C ~ $\alpha_s(Q)$ ln x_L + $O(\alpha_s^2)$ with no PDF dependence ¹¹

Energy correlators inside jets

PRL 133 (2024) 071903

 $\alpha_S(m_Z) = 0.1229^{+0.0014}_{-0.0012} \text{ (stat)}^{+0.0030}_{-0.0033} \text{(theo)}^{+0.0023}_{-0.0036} \text{(exp)}$

- Extracted α_s at NLO + NNLL_{approx} (large x_L region)
- The most precise α_s measurement from jet substructure
- \triangle (E3C/E2C)/ $\triangle \log x_{L} \sim \alpha_{S}(Q) \rightarrow \text{running of } \alpha_{S}$

arXiv: 1708.01527

- Mostly terra incognita
- Hadron properties the result of the confined q/g
- A novel regime of QCD may exist: gluons saturate?

 $(Q_s^A)^2 \approx c Q_0^2$

arXiv: 2303.16984 arXiv: 2103.05419

Gluon factories

• We see a milder energy dependence than predicted

- gluon saturation? if so, independent of particle species
- Accessible Q_s values at EIC thanks to ion species and energies

Explore LHC with more particles; EIC can probe a new state of matter

nPDFs: long way to go

arXiv: 2203.13923 JHEP 09 (2020) 183

- LHC data gave an increase in kinematic coverage
- The modification of gluons not well understood (especially at high x)
 - available data sets limited

Tools for precise nPDF extraction

PLB 800 (2020) 135048

- LHC data reduced the gluon nPDF uncertainty
- The large-x (> 0.1) region is not affected though
 - only <u>dijets</u> and <u>top quarks</u> probe this *x* region

LHC data unique chance to pin down nPDF uncertainties

Tools for "inaccessible" nPDFs

- PRL 119 (2017) 242001 (editor's suggestion) PRL 73 (1994) 225 (PRL Retrospective)
- Top quark observed at Tevatron
 - further studied in pp collisions at LHC
- Established a top quark program in the nuclear environment
 - \circ going from baseline ("reference" pp) \rightarrow pPb \rightarrow PbPb data

Top quarks can constrain gluons in so far inaccessible regions

Heavy flavor data

Ann. Rev. Nucl. Part. Sci. (2024)

Observable \mathcal{O}	D^0	J/ψ	$\Upsilon(1S)$	$\psi(2S)$	B^0, B^{\pm}	c jet	b jet
Run-I:							5
ATLAS		$(240, 241)^{a}$	$(241)^{a}$	$(241)^{a}$			
CMS		$(242)^{a}$	(243)	$(244)^{a}$		(245)	(246)
ALICE	(247, 248, 249) ^a	$(250, 251)^{\mathrm{a}}, (252)$	(253)	$(254)^{a}$			(255)
LHCb	$(256)^{a,b,c}$	$(257)^{a}$	(258)				
RUN-II:							
ALICE		$(259)^{a}, (260)$	$(261)^{a}$	$(262)^{a}$			
LHCb	(263)	$(264)^{a}$	$(265)^{a}$		(266)		
FIXED TARGET:							
LHCb	(267, 268)	(267, 269)		(269)			

^a included in nCTEQ15HQ (50); ^b included in EPPS21 (51); ^c included in nNNPDF3.0 (52).

• A series of HF (quarkonia and open HF) data included in nPDFs

Impact on low-x gluons

- Clear impact of HF data on top of the EW production
- Similar shapes, but reduced uncertainties in nCTEQ15HQ

- The interpretation of LHC measurements depends on the the PDF+ α_s accuracy and precision
 - wrong PDFs can in principle mimic EFT corrections
- PDF coverage and precision is increasing, uncert. reduce
 - agreement among sets not always as good though
- Bound gluon PDFs poorly known
 - EW and HF data provided constraints
 - integration of quarkonium photoproduction into a framework ongoing (cf backup)

J. Roho

(ii) Fitting: approach 1: gluon pseudodata: Results

· Default xFitter set up supplemented with generated effective gluon PDF data

Q ² = 2.4 GeV ² → DIS S → DIS+effective gluon points A B C → DIS+effective gluon points A C → DIS+Eff	$g_{ m eff}(x_i)$ n from 2006.13857	$\delta g_{ m eff}(x_i) = rac{g_{ m fit}(x_i)}{\delta g_{ m eff}(x_i) = rac{1}{2} g_{ m eff}(x_i)}$	$\frac{\sigma_{+}(\text{data})_{i}}{\sigma_{+}(\text{fit})_{i}}$ $\frac{\sigma_{+}(\text{data})_{i}}{\sigma_{+}(\text{data})_{i}}$
	Dataset	$\chi^2_{ m min}/ m d.o.f~(DIS)$	$\chi^2_{\rm min}/{\rm d.o.f}$ (DIS+eff. gluon pts.)
$Q^2 = 22 \text{ GeV}^2$	HERA1+2 NCep 820	80/73	79/73
60 💥 015+effective gluon points	HERA1+2 NCep 460	220/207	220/207
10-5 50	HERA1+2 CCep	43/39	44/39
inina	HERA1+2 NCem	221/159	220/159
40 40 ellim	HERA1+2 CCem	54/42	56/42
30 PIO	HERA1+2 NCep 575	223/257	227/257
	HERA1+2 NCep 920	465/391	470/391
20-	LHC excl. $J/\psi pp$ 7 TeV	N/A	8.95/10
10	LHC excl. $J/\psi pp 13$ TeV	N/A	3.51/10
	LHC excl. Υpp 7,8 TeV	N/A	3.23/3
10 ⁻⁵ 10 ⁻⁴ 10 ⁻³ 10 ⁻² 10 ⁻¹ 1 x	Total $\chi^2_{\rm min}/{ m d.o.f}$	$1412/1154 \sim 1.22$	$1444/1177 \sim 1.23$

Introduction	Methodology	Electroweak bosons	Photons, hadrons, jets	Heavy quarks/quarkonia	Conclusion
000	00000	000	0000	000000	0000000

Theoretical input and experimental data

Analysis	nCTEQ15HQ	EPPS21	nNNPDF3.0	TUJU21	KSASG20
THEORETICAL INPUT:	1977 1-1	20001 200	1.000 Control 1	0.376-53-1-53	
Perturbative order	NLO	NLO	NLO	NNLO	NNLO
Heavy-quark scheme	SACOT $-\chi$	SACOT $-\chi$	FONLL	FONLL	FONLL
Data points	1484	2077	2188	2410	4353
Independent flavors	5	6	6	4	3
Free parameters	19	24	256	16	18
Error analysis	Hessian	Hessian	Monte Carlo	Hessian	Hessian
Tolerance	$\Delta \chi^2 = 35$	$\Delta \chi^2 = 33$	N/A	$\Delta \chi^2 = 50$	$\Delta \chi^2 = 20$
Proton PDF	\sim CTEQ6.1	CT18A	~NNPDF4.0	~HERAPDF2.0	CT18
Deuteron corrections	$(\checkmark)^{a,b}$	VC	\checkmark	~	~
FIXED-TARGET DATA:					
SLAC/EMC/NMC NC DIS	~	~	~	\checkmark	~
$-$ Cut on Q^2	4 GeV^2	1.69 GeV^2	3.5 GeV ²	3.5 GeV^2	1.2 GeV^2
- Cut on W^2	12.25 GeV ²	3.24 GeV^2	12.5 GeV^2	12.0 GeV^2	
JLab NC DIS	(√) ^a	~			~
CHORUS/CDHSW CC DIS	(√/-) ^b	V/-	V /-	111	111
NuTeV/CCFR 2μ CC DIS	$(\sqrt{\sqrt{3}})^{b}$		V /-		
pA DY	~	\checkmark	~		~
Collider data:				0.02	
Z bosons	\checkmark	\checkmark	~	\checkmark	
W^{\pm} bosons	~	~	~	\checkmark	
Light hadrons	\checkmark	√ ^d			
Jets		~	~		
Prompt photons			~		
Prompt D ⁰	\checkmark	\checkmark	ve.		
Quarkonia $(J/\psi, \psi', \Upsilon)$	~	40,27	0.00000 1101		

QCD analysis

- 2D & 3D dijet cross sections as a function m_{1,2} using with R = 0.8 are investigated as part of a QCD analysis
 - procedure based on HERAPDF2.0 analysis^[1], similar to CMS 13 TeV inclusive jet analysis^[2] (SMP-20-011)
- fit *deep inelastic scattering* (DIS) data from HERA in addition to the CMS dijet measurements
 - limit DIS data to Q² > 10 GeV² to minimize impact of higher-twist corrections
- x dependence of PDFs is parametrized by the general form

$$x f(x) = A_f x^{B_f} (1-x)^{C_f} (1+D_f x + E_f x^2)$$

- A, B & C parameters always included (some fixed by sum rules)
- D & E parameters added as needed based on χ² scan
- PDFs determinations are performed both for a fixed value of the strong coupling constant $\alpha_s(m_z) = 0.118$ and in simultaneous **PDF** + $\alpha_s(m_z)$ fits

[1] H1, ZEUS Collaborations. "Combination of measurements of inclusive deep inelastic \${e^{\pm }p}\$ scattering cross sections and QCD analysis of HERA data", Eur. Phys. J. C **75** (2015) 12, doi:10.1140/epjc/s10052-015-3710-4, arXiv:1506.06042

[2] CMS Collaboration, "Measurement and QCD analysis of double-differential inclusive jet cross sections in proton-proton collisions at $\sqrt{s} = 13 \text{ TeV}$ ", JHEP **02** (2022) 142, doi:10.1007/JHEP02(2022)142, arXiv:2111.10431