Recent ALICE results relevant for PDFs at low and high-x, saturation

Anisa Khatun (for the ALICE Collaboration) The University of Kansas

Diffraction and Low-x 2024 Palermo, Sicily 09/09/2024

Office of Science

Mathematical Introduction

Physics of Ultra-Peripheral Collisions (UPCs)

The ALICE experiment in Run 2

 \mathbf{M} Coherent and exclusive J/ψ photoproduction

 \Box Incoherent and dissociative J/ψ in p-Pb collisions

M The ALICE experiment in Run 3

I Future prospects

Introduction

Physics of UPCs

A. Khatun

The ALICE experiment in Run 2 (2015 - 2018)

A. Khatun

Phys.Lett. B798 (2019) 134926

Coherent J/ ψ measurement at forward rapidity

 $\mathbf{\mathfrak{U}} \mathbf{J}/\psi \to \mu^+ + \mu^-$

A. Khatun

Phys.Lett. B798 (2019) 134926

ALI-PUB-324284

Coherent J/ ψ measurement at mid rapidity

A. Khatun

Eur. Phys. J. C 81 (2021) 712

Souce/target photon direction ambiguity

At mid rapidity contribution are equal

Disentangle in terms of neutron emission classes (impact parameters)->

A. Khatun

A. Khatun

 $\sigma_{\gamma \mathrm{Pb}}$ $S_{\rm Pb}(W_{\gamma \rm Pb,n}) =$

A. Khatun

ALI-DER-543433

Energy dependence of exclusive J/ψ measurement

- \mathbf{M} Asymmetric system, no source/target ambiguity in the $W_{\gamma p,n}$ energy
- Incoming hadron energy known
- \blacksquare ALICE coverage at 8.16 TeV -> 27 < $W_{\gamma p,n}$ < 57 GeV

M Low energy photon emitter coming from nucleus (Pb)

ALICE measurement at mid, semi forward and forward rapidities

Mow measurements in UPC p-Pb at high energies are needed

A. Khatun

|t| dependence of coherent J/ψ measurement

Cross section sensitive to the spatial gluon distribution

STARLight overestimates the data

M Both models LTA (includes shadowing effects) and b-BK (includes gluon saturation effect) describe qualitatively data

A. Khatun

Incoherent and dissociative J/ ψ measurements with ALICE

Phys.Lett. B798 (2019) 134926

|t| dependence of incoherent J/ψ measurement

☑ Variance -> Quantum fluctuation (incoherent)

- Models that include quantum fluctuations of the gluon density describe the data better than the models without
- **Mo** model describes data fully (normalisation proton to nuclear target)

Slope is sensitive to the spatial gluon fluctuation

M Probing gluonic "hot spot" in Pb for the first time!

A. Khatun

Low-x 2024

Energy dependence of dissociative J/ψ measurement

A. Khatun

Phys. Rev. D 108, 112004 (2023)

Low-x 2024

A. Khatun

UPC 2023

UPC event selection

RUN 2 UPC event

If the select a exclusive vector meson UPC event we require no signal in the FIT and further empty ZDCs

M Possible to veto signals in individual detectors in Run 3

More flexibility, possible to select inclusive, semi-inclusive UPC events

A. Khatun

RUN 3 UPC event

Low-x 2024

Progress on UPCs at ALICE

		PbPb
	σ	Central 1
Meson		Total
$ ho ightarrow \pi^+\pi^-$	5.2b	5.5 B
$\rho' \to \pi^+ \pi^- \pi^+ \pi^-$	730 mb	210 M
$\phi \rightarrow \mathrm{K^+K^-}$	0.22b	82 M
$J/\psi ightarrow \mu^+ \mu^-$	1.0 mb	1.1 M
$\psi(2{ m S}) o \mu^+ \mu^-$	30µb	35 K
$ m Y(1S) ightarrow \mu^+ \mu^-$	$2.0 \ \mu b$	2.8 K

A. Khatun

Low-x 2024

Phys.Lett. B798 (2019) 134926

UPC physics prospects in Run 3 and beyond : Exclusive vector meson photoproduction

If Precision study of vector meson photoproduction in UPCs with significant increase in integrated luminosity Incertainties for nuclear suppression factor are expected to be at the level of 4% [CERN Yellow Rep. Monogr. 7 (2019) 1159-1410]. **M** Possible new measurements e.g. double vector meson photoproduction ✓ UPC bottomonia production [arXiv:2303.03007v1] **MFT** in Run3 and FoCal in Run 4

A. Khatun

Low-x 2024

UPC Physics prospects in Run 3 and beyond : Exclusive vector meson photoproduction with FoCal

FoCal: Part of ALICE upgrade for Run 4 (starting from 2029) Positioned 7 m from IP2 (A-side), covering $3.4 < \eta < 5.8$

[J. Phys. G: Nucl. Part. Phys. **50** 055105]

Pb UPCs [J. Phys. G: Nucl. Part. Phys. 50 055105]

- Shed light into gluon shadowing, gluon saturation and subnucleonic fluctuations

Other recent ALICE results.....

- Overview of the latest ALICE UPC and photonuclear results by Simone Ragoni
- Jet and jet substructure: ALICE results by Haidar Masud Alfanda
- Recent Diffraction studies with ALICE by Ernesto Calvo Villar

• Pion and kaon pair production in double gap events in ALICE Run 3 by Rainer Martin Schicker