Deep inelastic scattering with collider neutrinos at the LHC and beyond

Toni Mäkelä

In collaboration with

W. Altmannshofer, J.M. Cruz-Martinez, M. Fieg, T. Giani, F. Kling, P. Krack, T.R. Rabemananjara, J. Rojo, S. Sarkar, S. Trojanowski, K. Xie, B. Zhou

> Diffraction and Low-x 2024 Palermo, Italy September 8-14th, 2024

Introduction Neutrinos at the LHC

- The hadron collisions at the LHC produce a myriad of hadrons, which can produce neutrinos via weak decays
 - Neutrinos & possible LLPs never observed at the IP

Inclusive DIS

Physics at **production** and **detection** sites can affect spectra of observed neutrino interactions

Charm-tagged DIS Handle to s-quark PDF

Observation and cross section measurement

- First LHC neutrinos observations!
 - FASER DOI:10.1103/PhysRevLett.131.031801
 - **SND@LHC** DOI:10.1103/PhysRevLett.131.031802
- FASER: first measurement of $\nu_{\rm e}$ and ν_{μ} int.ac. cross section DOI:10.1103/PhysRevLett.133.021802

The Forward Physics Facility

- Run III experiments demonstrate great potential, but statistics will be limited
- FPF: a proposed dedicated multi-experiment facility at 620 m from IP1 (ATLAS)
 - FLArE, FORMOSA, FASER2 & FASERv2
- Would ensure a rich neutrino program at hi-lumi LHC
- Here we assess the potential of forward experiments to constrain the neutrino flux and several (B)SM processes
 UCI 2024/9/9

The LHC as a neutrino-ion collider

Run III

FASERv (W) • FASERv2 (W

FPF

• SND@LHC (W) • FLArE (Lar)

Estimate impact to the global PDF4LHC21, EPPS21 (W) sets via profiling with xFitter

- Experimental variables
 - $E_{v} = E_{h} + E_{l}$
 - $Q^{2} = 4(E_{h} + E_{l}) E_{l} \sin^{2}(\theta_{l}/2) _{10}$
 - $x = Q^2 / (2 m_N E_h)$
- Equivalent to E_l , E_h , θ_l

 \mathcal{X}

FASERv2 PDF4LHC21

Protons: assume isoscalar free-nucleon 1. target

Most improvement observed for u_v , d_v , s

- s benefits from charm tagging
- u_v, d_v from charge ID

PDF4LHC21 includes vDIS, FPF constrains further!

Run III stats too small to constrain PDFs, further motivates FPF & EIC UCI 2024/9/9

FPF combination PDF4LHC21

Protons: assume isoscalar free-nucleon target

Most improvement observed for u_v , d_v , s

- s benefits from charm tagging
- u_v, d_v from charge I

For the proton PDF study, combine information from FASERv2 and FLArE

 10^{-2}

 10^{-1}

 10^{-3}

 10^{-2}

 10^{-3}

10⁻¹

FASERv2 impact on nuclear PDFs EPPS21 (W)

- Observed

 improvement also after accounting
 for nuclear
 corrections
- Most notable effects for u_v, d_v and s, as expected

UCI 2024/9/9

Implications to phenomenology **Processes at central experiments**

- Test the impact of the obtained PDF sets to the precision of SM cross sections
- Baseline (PDF4LHC21) vs stat+syst (*) vs stat-only
- Here e.g. processes relevant to inclusive Drell-Yan and measurements of $m_w \& \sin^2 \theta^w$

 $pp \rightarrow Hjj + X$

1.6

 σ [pb]

 $pp \rightarrow HW^{-} \rightarrow H\ell\bar{\nu}_{\ell} + X$

PDF4LHC21_FPF*

PDF4LHC21_FPF

PDF4LHC21 FPF

PDF4LHC21_FPF

PDF4LHC21

1.5

FPF@FCC Cold nuclear matter at x~10⁻⁹

Pb PDF in p-Pb collisions: forward v detection can probe nPDF at IP! ullet

What about neutrino flux uncertainties?

- Predictions for the incoming flux obtained using various generators, different models for v production
 - Model assumptions affect v spectra shape & magnitude, predictions differ greatly
 - Previously unexplored kinematic region, MC generators will need new tunes
- Important step in understanding SM and the stream towards refining BSM searches: large differences between flux predictions, uncertainties are potentially large. Ensure physics effects are not covered by uncertainties!
- Using Fisher information, estimate the ultimate uncertainty for the flux by parametrizing correlations between a broad set of different predictions
 - Examine spectra in terms of energy and radial bins, *v* flavor, *v* parent hadrons
- Profiling: exclusion bounds for various processes at existing & proposed detectors
 UCI 2024/9/9

The neutrino spectra

Physics applications – enhanced strangeness and the cosmic ray muon puzzle

- **Muon puzzle**: 8σ deficit of high-*E* muons in air shower simulations (QCD) vs measurements
- Is the distribution of produced secondary particles predicted correctly by current models?
 - Enhancement of *s* production would increase number of muons
 - Should lead to less pions and more kaons at LHC (Enhanced strangeness hypothesis)
- Reweigh the counts of neutrinos associated with pions by $(1 f_s)$, and those from kaons by $(1 + F_s)$

Phenomenological factor, account for difference in π / K production rates

arXiv: 2202.03095 [hep-ph]: $f_s=0.5$ could explain the cosmic ray muon excess

Non-standard interactions (NSI)

(See doi:10.1007/JHEP10(2021)086)

• Extend the SM Lagrangian by dimension-6 EFT terms

Projected FPF limits improve the constraints significantly already after 10% of data taking. Full result will improve select operators' limits by an order of magnitude

Profiled over all λ (3 R bins)

Neutrino tridents @ FASERv2

Neutrino-induced charged lepton production in Coulomb fields of heavy nuclei

 10^{-1}

 10^{1}

10²

 E_{ν} [GeV]

10³

UCI 2024/9/9 Identified diffractive charm b.g. neglected elsewhere! observation at

FASERv2!

Summary and outlook

- We have entered the era of using LHC neutrinos directly for physics
- Proposed forward experiments at the LHC (& beyond) have potential e.g. for
 - Solving the cosmic muon ray excess
 - Probing proton and nuclear PDFs, notable improvement in s PDF
 - Great constraining potential for neutrino NSI & 4-Fermi interactions
 - Conclusive observation of neutrino trident interactions
 - Probe physics at the EW scale and below
 - Also non- $\mu^+\mu^-$ final states may be possible (no prior observations!)

Thanks for your attention!

Find info matrix for observed spectrum $m(\lambda, p, p') \rightarrow profiling \rightarrow constraints$

Synergy in DIS @ FPF & EIC

- Double-differential cross section
 - PDF information in structure functions F

$$\begin{aligned} \frac{d^2 \sigma^{\nu A}(x,Q^2,y)}{dxdy} &= \frac{G_F^2 s/4\pi}{(1+Q^2/m_W^2)^2} \big[Y_+ F_2^{\nu A}(x,Q^2) - y^2 F_L^{\nu A}(x,Q^2) + Y_- x F_3^{\nu A}(x,Q^2) \big] \\ \frac{d^2 \sigma^{\bar{\nu}A}(x,Q^2,y)}{dxdy} &= \frac{G_F^2 s/4\pi}{(1+Q^2/m_W^2)^2} \big[Y_+ F_2^{\bar{\nu}A}(x,Q^2) - y^2 F_L^{\bar{\nu}A}(x,Q^2) - Y_- x F_3^{\bar{\nu}A}(x,Q^2) \big] \end{aligned}$$

• E.g. with 4 active flavors, diagonal CKM, and no heavy quark effects:

$$F_2^{\nu p}(x,Q^2) = 2x(f_{\bar{u}} + f_d + f_s + f_{\bar{c}})(x,Q^2)$$

$$F_2^{\ell p}(x,Q^2) = x\left(\frac{4}{9}[f_{u^+} + f_{c^+}] + \frac{1}{9}[f_{d^+} + f_{s^+}]\right)(x,Q^2), \quad f_{q^\pm} = f_q \pm f_{\bar{q}}$$

• Synergy: CC from FPF, NC from EIC - best quark flavor separation sensitivity UCI 2024/9/9 20

FPF pseudodata in the NNPDF fit

- Independent cross check: include the FPF pseudodata in the NNPDF fit
- Indicating similar impact as the xFitter profiling studies with PDF4LHC21

Polarized PDF (pPDF) with FPF@FCC

- How do parton spins & angular momenta lead to a proton spin $\frac{1}{2}$? •
- Colleagues courses arxiv:2409.021631 [hep-ph] Polarized DIS is a good probe, pPDF part of e.g. the future EIC program •
- Neutrinos approx. • massless, beam is polarized: polarize target to probe pPDF
- High event rates at FCC, overcoming (Q^2) smallness of $:\Delta\Sigma(x,$ neutrino interaction cross sections

