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Outline:

- Introduction and motivation: nuclear shadowing vs. saturation

- Leading twist approach (LTA) as a dynamical mechanism of nuclear shadowing
(NS) and its predictions for diffraction in DIS on nuclei

- LTA and nuclear (non-enhancement) of the saturation scale

- Summary
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Nuclear shadowing

* Nuclear shadowing (NS) is general phenomenon of high-energy scattering
— nuclear cross section < sum of nucleon cross sections.

* NS suppresses nuclear structure functions & parton distributions at small x:

» fundamental in perturbative QCD
* define initial conditions (cold nuclear matter effects) in pA & AA scattering.
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Hadronization Freeze-out

* NS affects description of gluon-rich nuclear
matter in quark-gluon color glass condensate
(CGC) framework.
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Dynamical mechanism of nuclear shadowing

 Cleanest way to probe nuclear shadowing — nuclear deep inelastic
scattering (DIS) — ratio of nucleus/proton structure functions Fg‘/Fg.

* Same fixed-target data can be described by different mechanisms of NS:
* leading-twist nuclear PDFs from global QCD fits, Eskola, Paakkinen, Paukkunen, Salgado,
EPJC 82 (2022) 5, 413 (EPPS21); Klasen, Paukkunen, 2311.00450 [hep-ph]
* nucleus-enhanced power (higher-twist) corrections, aiu, vitev, PRL 93 (2004) 262301
* mixture of leading and higher twist effects in dipole model with gluon saturation,
Kowalski, Lappi, Venugopalan, PRL 100 (2008) 022303
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* Qutstanding questions: What is the mechanism/origin of this suppression?
What is the relation between shadowing and saturation?



Diffraction in DIS on nuclei

* The planned Electron-lon Collider (EIC) in USA has potential to discriminate
among approaches of NS due to:

* wide x — O? coverage

* measurement of longitudinal structure function F’L“(x, 0?) sensitive to gluons

* for the first time measurement of hard diffraction in nuclear DIS.

e Sensitive observable is the ratio of diffractive to total DIS cross sections for a
heavy nucleus and the proton, Accardi et al., EPJ A52 (2016) 9, 268 [1212.1701 [hep-ex]]:
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Leading twist approach to nuclear shadowing

* Method to calculate various nuclear parton distributions (usual, generalized,
diffractive) as input for DGLAP evolution, Frankiurt, Strikman, EPJ A5 (1999) 293; Frankfurt, Guzey,
strikman, Phys. Rept. 512 (2012) 255 — alternative to global fits of nPDFs.

 Based on:

 Gribov-Glauber model of NS for soft hadron-nucleus scattering
» QCD factorization theorems for inclusive and diffractive DIS.

*y*+A - X+ A’amplitude is a series of diffractive scattering offi = 1,2,..., A
target nucleons: :

e Coherent diffraction A’ = A:
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LTA to nuclear shadowing (2)

* Apply collinear QCD factorization for diffractive DIS, coliins, PRD 57 (1998); PRD 61 (2000)
019902 — from structure function to parton distributions:
2

fO0x, xp, Q) = 4ﬂﬁ27(4)(x, Xp, Q%1 = O)szl; JdeA(E, 2)e g 0lon () I 2 py(b2)

2
”71

1 - 1- 7 2
D(3) 2 2 L6l ()T, (b) _ [oon()]
= £, xp, O —— p [d b ‘1 e ) = T

TA(Z;) = szp(l;,z)

* Transparent interpretation: nuclear diffractive PDFs shadowed in proportion
to the nuclear elastic cross section.

 Similarly for quasi-elastic scattering using completeness final states A’ :
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* In this case, NS is given by sum of elastic and inelastic nuclear cross sections.
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LTA predictions for nuclear diffractive PDFs

 Assumed that diffractive intermediate states X do not mix — one free

parameter asioft(x) — controls size and uncertainti

* High shadowing: given by probability of diffraction

167 Ial
fi/p(x) X

* Low shadowing: calculated using model for
hadronic structure of p meson.
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* In LTA, nuclear shadowing driven by
diffraction on proton — 10-15% probability

of diffraction in DIS@HERA leads to large
suppression of nuclear PDFs at small x.

* Compare to impulse approximation (lA):
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LTA predictions for Ruitfitot

« Combine LTA predictions for diffractive and usual nuclear PDIZZS;
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e Suppression Ry ~ 0.5 — 1 (quarks) and R4, & 0.5 — 1.3 (gluons) due to

interplay of large leading twist nuclear shadowing for diffractive and usual
nuclear PDFs.



LTA predictions for Ruititot (2)

* LTA predictions for the ratio of cross sections calculated at next-to-leading
(NLO) of perturbative QCD as function of diffractive mass M3 = Q*(xp/x — 1):
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 Reaffirmed earlier LTA result R .. = 0.5 — 1 and difference from nuclear
enhancement R ¢« = 1.5 — 2 in the gluon saturation framework, kowaiski, Lappi,
Venugopalan, PRL 100 (2008) 022303; Lappi, Le, Mantysaari, PRD 108 (2023) 114023.

* Ryno IS flat as function of M5 due to assumed independence of ¢’ . (x) on x.

oft



LTA predictions for Ruistitot (3)

* To understand these results and comparison with dipole model, examine
Risino: @S function of ¢! . (x) and 1'(x) = 1 — 64(x)/c’ ().
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 Boundary of LTA applicability is the black disk limit (BDL):
0, ¢(X) = 05(x) = 7By & 60 mb, using By = 6 GeV ™2 measured at HERA.

e In BDL, A/(x) = 0and Ry, — 1 @and RS, — 0.86.
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Leading twist nuclear shadowing and Qs

* Heuristic definition of saturation scale through the b-dependent gluon density
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* For nuclear PDFs, same parameters as > Pb-208. b=0  —— LTA

before, but remove integration [dzg

* For proton PDFs, Gaussian b-profile:
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— 0:,/0;, ~ 1 due to strong leading twist shadowing and dilute nuclear density.
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Summary

* Competing mechanisms for high-energy (small x) hard scattering on nuclei.

 Ratio of the diffractive-to-total DIS cross sections for a heavy nucleus and proton
at EIC discriminates between leading twist shadowing and saturation.

» We confirmed our result that R, = 0.5 — 1.3 due to strong leading twist
shadowing in contrast with Ry ® 1.5 — 2 in the gluon saturation framework.

* R0t 1S CONtrolled by the (dipole) cross section, which is large in LTA due to
connection to diffraction on proton and small in the dipole model.

* One needs complementary observables/processes, e.g., the longitudinal nuclear
structure function F‘L“(x, 0?), Frankfurt, Guzey, McDermott, Strikman, JHEP 02 (2002) 027,
photoproduction of J/ywin AA UPCs at LHC and RHIC, Guzey, Kryshen, Strikman, Zhalov, PLB

726 (2013) 290; Guzey, Strikman, 2404.17476 [hep-ph], VE€ctor meson/jet cross section ratios,
Kovchegov, Sun, Tu, PRD 109 (2024) 094028.

* Leading twist nuclear shadowing as well as dilute nuclear density strongly
deplete nuclear enhancement of the saturation scale Q2,/0;, ~ 1.
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