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High Energy Scattering

Target (ρt = ρ−) Projectile (ρp = ρ+)

〈T| → ← |P〉 ρ+ ∼

∫

dk
+
a
†
Ta

S-matrix:

S(Y) = 〈T 〈P| Ŝ(ρ
t
, ρ

p
) |P〉T〉 Y ∼ ln(s)

or, more generally, any observable Ô(ρt, ρp)

〈Ô〉Y = 〈T 〈P| Ô(ρt, ρp) |P〉T〉

How do these averages change with increase in energy of the process?

∂Y〈Ô〉Y = −H〈Ô〉Y H → theHE effectiveHamiltonian

H defines the high energy limit of QCD and is universal
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Expansion in αs

H = HLO(αs) + HNLO(α
2

s) + . . . ; H = H[ρt, δ/δρt]

JIMWLK Hamiltonian is a limit of H for dilute partonic system (ρp → 0) which scatters

on a dense target. It accounts for linear gluon emission + multiple rescatterings.

HJIMWLK
LO (1997-2002), HJIMWLK

NLO with massless quarks (2007-2016), HJIMWLK
NLO (mq) (2022)

Jalilian Marian, Iancu, McLerran, Weigert, Leonidov, Kovner (1997-2002)
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LO JIMWLK Hamiltonian

Jalilian Marian, Iancu, McLerran, Weigert, Leonidov, Kovner (1997-2002)

HJIMWLK

LO =

∫

x,y,z

KLO

{

J
a

L(x)J
a

L(y) + J
a

R(x)J
a

R(y)− 2J
a

L(x)S
ab

A (z)Jb

R(y)
}

KLO(x, y, z) =
αs

2π2

(x − z)i(y − z)i

(x− z)2(y − z)2

SA
cd(z) = P exp

{

i

∫

dx
+
T

a αa

t(z, x
+)

}cd

. ∆”αt = ρt (YM)

Here ρp → JL and Ŝρp → JR are left and right SU(N) generators:

J
a

L(x)S
ij

A(z) = (Ta
SA(z))

ij δ2(x− z) J
a

R(x)S
ij

A(z) = (SA(z)T
a)ij δ2(x− z)

HJIMWLK contains all the LO BFKL /BKP/TPV physics
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JIMWLK Hamiltonian @ NLO

Kovner, ML & Mulian (2013) based on Balitsky & Chirilli (2007), Grabovsky (2013); ML & Mulian (2016)

HNLO JIMWLK =

∫

x,y,z

KJSJ(x, y; z)
[

Ja
L(x)J

a
L(y) + Ja

R(x)J
a
R(y)− 2Ja

L(x)S
ab
A (z)Jb

R(y)
]

+

∫

x y z z′
KJSSJ(x, y; z, z

′
)
[

f
abc

f
def

J
a
L(x)S

be
A (z)S

cf
A (z

′
)J

d
R(y)−NcJ

a
L(x)S

ab
A (z)J

b
R(y)

]

+

∫

x,y,z,z′
Kqq̄(x, y; z, z

′
)
[

2 J
a
L(x) tr[S

†
F (z) t

a
SF (z

′
)t

b
] J

b
R(y) − J

a
L(x)S

ab
A (z) J

b
R(y)

]

+
∫

w,x,y,z,z′
KJJSSJ(w; x, y; z, z′)facb

[

Jd
L(x) J

e
L(y)S

dc
A (z)Seb

A (z′) Ja
R(w) − Ja

L(w)Scd
A (z)Sbe

A (z′) Jd
R(x) J

e
R(y)

]

+
∫

w,x,y,z
KJJSJ(w; x, y; z) f bde

[

Jd
L(x) J

e
L(y)S

ba
A (z) Ja

R(w) − Ja
L(w)Sab

A (z) Jd
R(x) J

e
R(y)

]

+
∫

w,x,y
KJJJ(w; x, y)fdeb [Jd

L(x) J
e
L(y) J

b
L(w) − Jd

R(x) J
e
R(y) J

b
R(w)] .
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Motivation and Objectives

Precise saturation physics phenomenology at NLO is badly needed.

The JIMWLK Hamiltonian at NLO is known for some years, but there are problems there.

• No known recipe for numerical evaluation

• Large transverse logarithms emerge: H ∼ αs(# + αs (# + Log)),

If the Log is large, then αs Log ∼ 1 – not a small correction to LO

There are various types of the large Logs there:

running coupling effects, (Ioffe) time ordering, DGLAP logs.

All have to be identified, clearly separated, and independently resummed.
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LO JIMWLK kernel beyond LO

H =

∫

x,y,z

K(x, y; z)
[

J
a

L(x) J
a

L(y) + J
a

R(x)J
a

R(y) − 2J
a

L(x) S
ab

A (z) Jb

R(y)
]

An effective kernel K = KLO + KNLO + .... ∼ αs(# + αs (# + Logs) + · · ·)

Large transverse logarithms emerge at NLO. There are various types of large Logs - all

have to be identified, clearly separated, and independently resummed.

Proper resummation requires understanding of physics beyond NLO!

• Running coupling effects (UV divergent) – rcJIMWLK:

KLO =
αs

2π2

XY

X2Y2
→ Krc =

αs[running]

2π2

XY

X2Y2

• DGLAP logs: Large transverse logs of the log(QT
s /Q

P
s ) type (dilute-on-dense).

M. Lublinsky



NLO Kernels (Large UV Logs only) X = x−z

Y = y−z

KJSJ(b terms) =
α2

s

16π3

{

−b
(x− y)2

X2Y2
ln(x− y)

2
µ

2
+

b

X2
lnY

2
µ

2
+

b

Y2
lnX

2
µ

2

}

+ · · ·

Here µ is the normalization point, b = 11
3
Nc −

2
3
nf , b lnQ2/µ2 → αs(Q

2)

Huge ambiguity in identifying Q

Resum large Logs into an effective kernel K = KLO + KJSJ + ....

∫

x y z,z′
KJSSJ(x, y; z, z

′
) J

a

L(x)J
b

R(y)
[

D
ab
(z, z

′
)
]

∼ b × (UV divergent Log)

D
ab
(z, z

′
) ≡ Tr[T

a
SA(z)T

b
S
+
A(z

′
)]

The UV divergence in JSSJ is trivial: when the two gluons are too close to each other

(z ∼ z′), they cannot be resolved by the target and hence should be counted as a single

gluon scattering. We are thus prompted to introduce a ”resolution scale” Q
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Dressed Wilson line

Within the finite resolution Q, bare gluons → dressed gluons,

bare Wilson lines → dressed Wilson lines, S → SQ

S
ab

Q (z) = S
ab

A (z)+
αs

2π2

∫ 1

0

dξ σ(ξ)

∫ Q−1 d2Z

Z2

(

D
ab(z + (1− ξ)Z, z− ξZ) − Nc S

ab

A (z)
)

ξ is the fraction of longitudinal momentum carried by one of the gluons.

σ(ξ) =

[

1

ξ(1− ξ)

(

ξ2 + (1− ξ)2 + ξ2(1− ξ)2
)

]

+

; 2Nc

∫ 1

0

dξσ(ξ) = −
11Nc

3
→ − b

This is the Pgg splitting function except that we introduce the ”+” prescription both for

ξ = 1 and ξ = 0 poles The ”+” prescription emerges from the 1/ξ subtraction absorbed

into (LO)2 part of the evolution.

The sign is negative – correcting for the over-subtraction in the LO.

We go beyond the usual DGLAP: we allow simultaneous scattering of all gluons.

For Q > QT
s , SQ ≃ SA - the target does not resolve gluon splitting

at distances smaller than 1/QT
s .
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Resolution scale and the running coupling

Express S in terms of SQ and substitute it into the LO+NLO JIMWLK Hamiltonian.

H[S]→ H[SQ]. The Hamiltonian will feature lnQ2 terms such as ln(Q2X2).

K = KLO

(

1 +
αs

4π
b (lnX

2µ2 + lnY
2µ2 − lnQ

−2µ2)

)

+ otherO(α2
s) terms

We assume existence of a typical scale QP
s ≪ QT

s associated with the projectile, such

that ln(QP
s X

2) are small. The UV finite parts of the Hamiltonian proportional to b do

not have any large Logs

Kin = K(Q = Q
P

s ) =

√

αs(X)αs(Y)

2π2

XY

X2Y2

[

1 +
αs

8π
b (small logs)

]
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However, at Q = QP
s , SQ is very different from SA, SQ ∼ SA [1 + αs #Log(Q2/QT

s )].

This large Log has to be resummed via inclusion of multiple consecutive DGLAP splittings:

∂SQ(z)

∂ lnQ
= −

αs

2π2

∫

ξ

σ(ξ)

∫

φQ

[DQ(z) − Nc SQ(z)]

DQ(z1, z2) ≡ Tr[T
a
SQ(z1)T

b
S
+
Q(z2)]

If we were to take Q = QT
s then SQ ≃ SA but the lnQ2 terms in the Hamiltonian would

be large and have to be resummed.

Either way, we have to resum large logs of the order logQT
s /Q

P
s .
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Functional RG

The resummed Hamiltonian should be Q-independent:

dH

d lnQ
=

∂H

∂ lnQ
+

∫

u

[

δH

δSQ(u)

∂SQ(u)

∂ lnQ

]

= 0

DGLAP-like evolution for the Hamiltonian (evolution in the space of Hamiltonians):

H[Q
P

s ] = Exp

[

∫ QT
s

QP
s

dQ

Q
HDGLAP

]

Hin

HDGLAP =
αs

2π2

∫

u

∫

ξ

σ(ξ)

∫

φQ

Tr

(

[DQ(u) − Nc SQ(u)]
δ

δSQ(u)

)

QP
s = QP

s (η) – QP
s is dynamical (rapidity dependent);

hence the resummed Hamiltonian is too.
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Weak target field approximation – linearization

S
ab

Q = δab + f
abcαc

Q ; D
ab

Q (z1, z2) = Nc

(

δab +
1

2
f
abc

[

αc

Q(z1) + (αc

Q(z2))
∗
]

)

Expand the Hamiltonian (BFKL-like)

HDGLAP ∼ αQ

δ

δαQ

HDGLAP is homogeneous and hence solvable

Saturation region

HDGLAP =
αs

2π2

∫

u

∫

ξ

σ(ξ)

∫

φQ

Tr

(

[Tr[T
a
SQ(z1)T

b
S
+
Q(z2)]u − Nc SQ(u)]

δ

δSQ(u)

)

Since |z1 − z2| = 1/Q > 1/QT
s , the two gluons are well separated and outside the

correlation region in the target (in a sense of averaging over the target). Neglect the first

term. HDGLAP is again homogeneous
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Summary/Outlook

• DGLAP-like resummation inside the JIMWLK Hamiltonian has been performed. These

DGLAP corrections are large whenever there is a large disparity between the correlation

lengths (or saturation momenta) in the projectile and the target.

αs Y

per rung

αs lnQT
s /Q

P
s

per rung

• rcJIMWLK emerges with the scale choice for the running coupling:

K ∼
√

αs(X)αs(Y)
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