D0-TOTEM Odderon observation: an update

C. Royon

on behalf of

K. Österberg,

Department of Physics & Helsinki Institute of Physics, University of Helsinki

on behalf the D0 & TOTEM collaborations

Diffraction and low x 2024 9.9.2024

Elastic hadron-hadron scattering: colourless multi-gluon t-channel exchanges

identical for $pp \ \& p\bar{p}$ different sign for $pp \ \& p\bar{p}$

@ TeV-scale: gluon exchanges dominate \Rightarrow $pp \& p\bar{p}$ difference due to Odderon exchange

Odderon:

- Odderon exchange contribution predicted in Regge-theory
 L. Lukaszuk & B. Nicolescu, Lett.
 Nuovo Cim. 8 (1973) 405
- confirmed in QCD as C-odd exchange of 3 (or odd #) gluons at leading order
 J. Bartels, Nucl. Phys. B 175 (1980) 365; J. Kwiecinski & M. Praszlowics Phys. Lett. B 94 (1980) 413
- searched for last 50 years,
 until recently no convincing
 experimental evidence

Elastic pp differential cross-section

$d\sigma_{el}/dt$ measurements in $pp/p\overline{p}$

10⁻³

0.2

0.4

0.6

0.8

- Diffractive minimum ("dip") & secondary maximum
 ("bump") clearly observable in pp (contrary to $p\bar{p}$)
- $pp \& p\bar{p} d\sigma_{el}/dt \text{ in dip-bump region well described by}$ $h(t) = a_1 e^{-a_2|t|^2 a_3|t|} + a_4 e^{-a_5|t|^3 a_6|t|^2 a_7|t|}$

1 1.2 Itl(GeV²)

Data-driven extrapolation of $d\sigma_{el}^{pp}/dt$

- Short (\sim 8 % of fit range) extrapolation of the 8 characteristic $pp \ d\sigma_{el}/dt$ points to \sqrt{s} = 1.96 TeV
- Interpolation of $pp \ d\sigma_{el}/dt$ characteristic points ✓ using h(t) (see previous slide) allows comparison with D0 measured $p\bar{p} d\sigma_{el}/dt$
- Only 3-4 \sqrt{s} points limits formulas to 2 parameters
- Excellent fits for all characteristic points

bump+10

bump+5

 $\sum_{n=1}^{n} (\times 2)$

mid1

dip2 (×0.5)

 $\overline{\text{pump2}(\times 0.2)}$

 $mid2 (\times 0.1)$

dip (×0.1

10

12

 \sqrt{s}

14

 (TeV)

 $\sigma_{tot}^{pp} \text{ (and } d\sigma_{el}^{tot}/dt \big|_{t=0} \text{) at } \sqrt{s} = 1.96 \text{ TeV extrapolated from TOTEM } \sigma_{tot}^{pp} \text{ measurements using formula: } \sigma_{tot} = a \log^2 \sqrt{s} ([\text{TeV}]) + b$

- $\sigma_{tot}^{pp}(\sqrt{s} = 1.96 \text{ TeV}) =$ $82.7 \pm 3.7 \text{ mb} \Rightarrow$ $d\sigma_{el}^{pp}/dt \Big|_{t=0} =$ $357 \pm 26 \text{ mb/GeV}^2$
- Short (~8 % of fit range) extrapolation of σ_{tot}^{pp} to \sqrt{s} = 1.96 TeV
- Only $4\sqrt{s}$ data points limits formulas to 2-3 parameters
- $\sim \sim$ 2 TeV close to boundary between region best described by log² √s (higher √s) & region best described by log √s (lower √s) behavior

•

χ^2 for $pp \& p\overline{p}$ comparison

As a result of interpolation, extrapolated $pp \ d\sigma_{el}/dt$ values at neighbouring D0 |t|-values strongly correlated \Rightarrow full covariance matrix (with essential diagonal protection) included in χ^2 for $pp \& p\bar{p}$ comparison

$$\chi^{2} = \sum_{\text{points } i,j} \left\{ \left(\frac{d\sigma_{el,i}^{pp}}{dt} - \frac{d\sigma_{el,i}^{p\bar{p}}}{dt} \right) C_{i,j}^{-1} \left(\frac{d\sigma_{el,j}^{pp}}{dt} - \frac{d\sigma_{el,j}^{p\bar{p}}}{dt} \right) \right\} + \frac{(A - A_{0})^{2}}{\sigma_{A}^{2}} + \frac{(B - B_{0})^{2}}{\sigma_{B}^{2}} \approx 0$$

where $C_{i,j}$ covariance matrix and $A \& B \pm wo$ constraints \implies 8 points, 6 d.o.f.

- A = normalization OP(pp) = QP(pp) (also expt'ly. true within uncertainties)
- B = elastic slope[B(pp)] = B(pp)] (also expt'ly true within uncertainties)
- Assume pp OP = $p\bar{p}$ OP (experimentally true within uncertainties), valid as long as maximal possible C-odd ("maximal odderon model"), secondary Reggeon effects & $pp/p\bar{p} \rho$ differences included as systematics (2.9 %)

a) D0 & TOTEM covariance matrices diagonalized separately b) first term of χ^2 estimated using the sum of the two diagonalized matrices

 $\chi^2 = 23.6$ (d.o.f. = 6) $\Rightarrow pp \& p\bar{p} d\sigma_{el}/dt$ differ by 3.4 σ at \sqrt{s} = 1.96 TeV

Comparison of pp & pp cross section

Extrapolation of TOTEM $pp \ d\sigma_{\rm el}/dt$ at \sqrt{s} = 2.76, 7, 8 and 13 TeV in dip-bump region to \sqrt{s} = 1.96 TeV for direct comparison with D0 $p\bar{p} \ d\sigma_{\rm el}/dt$

TOTEM

Cui et al. (*PLB 839 (2023) 137826*) obtains significances of 2.2-2.6 σ when attempting to repeat the extrapolation: fails on the position of the bump @ 1.96 and 2.76 TeV (ends up @ too low |t|) & disregards the full correlation of both slope & overall normalisation Csorgo et al. (*EPJC 81 (2021) 2*) claims larger Odderon evidence using scaling properties of elastic scattering: scaling fails for most precise data set, TOTEM $d\sigma_{\rm el}/dt$ @ \sqrt{s} = 13 TeV ⁸

Updated χ^2 for $pp \& p\overline{p}$ comparison

TOTEM-D0 preparing a longer (more detailed) paper that also will include an updated version of the pp & $p\bar{p}$ comparison at \sqrt{s} = 1.96 TeV

- \checkmark Improved TOTEM pp covariance matrix (with refined diagonal protection)
- \checkmark MC method for combining the diagonal D0 $p\bar{p}$ covariance matrix (Gaussian) with the non-diagonal TOTEM pp covariance matrix (Cholesky)
- Extrapolation of uncorrelated TOTEM σ_{tot} measurements to 1.96 TeV using scaleindependent formula: $\sigma_{tot} = a \log^2 \sqrt{s} + b \log \sqrt{s} + c$ enforcing p-value of fit to 0.5 (validity of uncertainty estimate cross checked by constraining fit to ISR σ_{tot} measurements in $\sqrt{s} \sim 10$ GeV region where the cross section is expected to be almost constant)

Updated χ^2 for $pp \& p\overline{p}$ comparison

- Explicit affine transformation assuring $pp \& p\bar{p}$ equality of elastic slope B & integrated cross section A in χ^2 calculation (for A & B definition see slide 7)
- \checkmark D0 measurements placed at the average value of fit with h(t) (see slide 4) within bin

 \Rightarrow a small increase in significance obtained from the improvements in updated analysis

Significance confirmed with a MC based Kolmogorov-Smirnov test, including data point correlations, combined with normalisation using Stouffer method (*S. Bityukov et al., Proc. Sci. ACATO8 (2009) 18*)

TOTEM ρ & σ_{tot} at LHC

- $\sim @\sqrt{s} = 13 \text{ TeV: } \rho^{pp} = 0.10 \pm 0.01 / 0.09 \pm 0.01 (TOTEM, EPJC 79 (2019) 785)$
- Models (COMPETE, Durham, Block-Halzen) unable to describe TOTEM ρ & σ_{tot}^{pp} measurements at 3.4-4.6 σ level without adding odderon exchange
- \sim Alternative non-excluded explanation for low ρ^{pp} : slower rise of $\sigma_{tot}^{pp} @ \sqrt{s} > \sqrt{s}_{LHC}$

ATLAS confirmed: ρ^{pp} @ 13 TeV = 0.098 ± 0.011 (EPJC 83 (2023) 441)

Comments about ρ determination

TOTEM

Sensitivity to ρ only in limited |t|-range in CNI region (only limited number of data points). Fits have to be made in steps (hadronic amplitude, Coulomb amplitude & ρ) in separate |t|-regions to avoid points without ρ sensitivity to influence ρ measurement. Not properly taken into account by V. A. Petrov and N.P. Tkachenko (PRD 106 (2022) 054003) & A.Donnachie and P.V. Landshoff (PLB 798 (2019) 135008 + PLB 831 (2022)137199)

- ✓ Claim: TOTEM (/ATLAS?) data described within $1\sigma \& \rho = 0.14$ for pp at 13 TeV without odderon (*A. Donnachie & P.V. Landshoff, PLB 798 (2019) 135008 & PLB 831 (2022)137199*): Have not included the standard "Bethe" phase in the CNI formula (give a change of $\rho \ge +0.02$)
- Reasonable description of elastic $pp \& p\bar{p}$ data obtained with Pomeron only: Durham model without odderon (*PLB 748 (2018) 192*) fails to describe D0 1.96 TeV elastic $p\bar{p}$ $d\sigma/dt$ in dip-bump region (4.3 σ) after being tuned on LHC elastic $pp \ d\sigma/dt$ data 12

TOTEM & ATLAS σ_{tot}^{pp} comparison

- 13 TeV TOTEM σ_{tot}^{pp} = 110.6 ± 3.4 mb direct counting experiment (needs correction for low mass diffraction)
- \sim 13 TeV TOTEM σ_{tot}^{pp} = 110.3 \pm 3.5 mb \sim
- ✓ need precise luminosity determination

Fully independent datasets & methods: $d\sigma_{\rm el}/dt$ normalisation from $\sigma_{\rm Coulomb}$ 2.20 , $\sigma_{tot,TOTEM}^{pp,13 TeV} = 110.5 \pm 2.4 \text{ mb}$ 13 TeV ATLAS $\sigma_{tot}^{pp} = 104.7 \pm 1.1 \text{ mb} \leftarrow difference$ 16π $1 (dN_{el})$ $\sigma_{tot}^2 = \frac{16\pi}{(1+\rho^2)} \frac{1}{\mathcal{L}} \left(\frac{dN_{el}}{dt}\right)_{t=0}$

 $\sigma_{tot} = \frac{16\pi}{(1+\rho^2)} \frac{(dN_{el}/dt)_{t=0}}{(N_{el}+N_{inel})}$

Trend same as @ \sqrt{s} = 7 & 8 TeV, essentially only a normalisation difference!

Not whole story: TOTEM has 2-4 consistent σ_{tot}^{pp} measurements using different extrapolation & normalisation methods, |t|-ranges and treatment of CNI/energy vs. 1 measurement/energy by ATLAS using basically the same method

Combine $pp/p\overline{p}$ comparison & $pp \rho + \sigma_{tot}$

using Stouffer method (S. Bityukov et al., Proc. Sci. ACAT08 (2009) 18).

Using updated $pp/p\overline{p}$ comparison: a rather small increase in the significance obtained in the exclusion of models without Odderon

- Extrapolation to $\sqrt{s} = 1.96$ TeV of TOTEM elastic $pp \ d\sigma/dt$ measurements at LHC in dip-bump region provide evidence of Odderon exchange in elastic scattering when compared to the D0 elastic $p\bar{p} \ d\sigma/dt$ measurement at Tevatron
- Combined with TOTEM $pp \sigma_{tot} \& \rho$ measurements at LHC, the $p\bar{p} \& pp$ elastic $d\sigma/dt$ comparison is excluding models without Odderon
- The updated $p\bar{p} \& pp$ elastic $d\sigma/dt$ comparison at \sqrt{s} = 1.96 TeV results in a rather small increase in the exclusion significance of models without Odderon
- Issues & objections raised regarding TOTEM-D0 $p\bar{p}$ & pp elastic $d\sigma/dt$ comparison at \sqrt{s} = 1.96 TeV as well as TOTEM 13 TeV ρ & total cross section measurements have been addressed