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Introduction

■ The TOTEM publication of the measurements of the σpp
tot and the ρpp

parameter at 13 TeV, prompted a renewal of interest in the potential
existence of the high-energy C-odd (Odderon) contribution.

⇒ The observed value ρ = (0.09 − 0.10)± 0.01 turned out to be
smaller than the predicted value (ρ = 0.13 − 0.14) based on Disp. Rel.

□ The new ATLAS/ALFA data recently confirmed this value of ρ

⇒ However, the value of σpp
tot at 13 TeV reported by the ATLAS/ALFA

team is approximately 5% lower than the average of values determined
by TOTEM
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Introduction

■ The relatively small value of ρ can be explained by the admixture of
the C-odd amplitude, which survives at high LHC energies

⇒ Such amplitude with the intercept αOdd close to 1 was predicted by
the perturbative QCD

□ Another indication in favor of the Odderon emerged when the
dσp̄p/dt data at

√
s = 1.96 TeV was compared with the corresponding

pp cross section (measured at 2.76 TeV but extrapolated to 1.96 TeV)
in the diffractive dip region

⇒ A clear difference was observed

⇒ It is important to emphasize that this result depends on the specific
extrapolation method between different energy levels
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Introduction

■ It should be noted that at very low t close to zero and in the
diffractive dip region, we deal with different C-odd contributions

⇒ To get a well-pronounced dip-bump structure near the dip in
dσpp/dt |2.76TeV and rather flat behavior of dσp̄p/dt

∣∣
1.96TeV , the real

part of the Odderon pp amplitude should be positive (in agreement
with perturbative QCD expectation for the three gluon exchange)

⇒ On the other hand, to explain the low value of ρ at t = 0, we need a
negative Odderon real part

⇒ This negative real part could be induced by non-pert. effects
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Formalism

■ Our analysis is focused on differential cross-section data involving
very small values of t

⇒ It requires consideration of the Coulomb-nuclear interference (CNI)
region:

F C+N = F N + eiαϕ(t)F C

□ We adopt

ϕ(t) = κ

[
γ + ln

(
B|t |
2

)
+ ln

(
1 +

8
BΛ2

)
+

4|t |
Λ2 ln

(
Λ2

4|t |

)
− 2|t |

Λ2

]

where κ flips sign when going from pp (κ = −1) to p̄p (κ = +1)
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Formalism

⇒ Λ2 is fixed at 0.71 GeV2

⇒ B is the t slope of elastic dσ/dt ∝ exp(Bt) cross-section

⇒ γ = 0.577... is the Euler-Mascheroni constant

⇒ α is the electromagnetic coupling:

α(q2) =
α(0)

1 − α(0)
3π ln

(
q2+m2

e
m2

e

)
where α(0) ≈ 1/137
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Formalism

■ The Coulomb amplitude is expressed as

F C = κs
2α
|t |

G2(t)

where G(t) is the electromagnetic form factor of the proton:

G(t) =
[

Λ2

Λ2 + q2

]2

□ To account for the eikonalization, it is convenient to calculate the
nuclear amplitude in terms of opacities:

Ωi(s,b) =
2
s

∫ ∞

0
q dq J0(bq)F N

i (s, t)

where i = P,O represent the Pomeron and Odderon exchanges
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Pomeron input

■ The single Pomeron contribution is given by

F N
P (s, t) = β2

P(t) ηP(t)
(

s
s0

)αP(t)

⇒ ηP(t) = −e−i π2 αP(t) is the even signature factor

⇒ βP(t) is the elastic proton-Pomeron vertex

⇒ αP(t) is the Pomeron trajectory,

αP(t) = 1 + ϵ+ α′
Pt +

m2
πβ

2
π

32π3 h(τ)

where

h(τ) = −4
τ

F 2
π (t)

[
2τ − (1 + τ)3/2 ln

(√
1 + τ + 1√
1 + τ − 1

)
+ ln

(
m2

m2
π

)]
with ϵ > 0, τ = 4m2

π/|t |, m = 1 GeV, and mπ = 139.6 MeV
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The Odderon input

■ From the standpoint of QCD (at the lowest order) the C = +1
amplitude arises from the exchange of two gluons and the C = −1
amplitude from the exchange of three gluons

■ Extensive theoretical studies have been directed towards uncovering
corrections to these results, particularly in higher orders

□ In this scenario, the leading-log approximation allows for the
summation of certain higher-order contributions to physical
observables in high-energy particle scattering processes

⇒ This approach was widely used in the study of the QCD-Pomeron
through the BFKL equation
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The Odderon input

⇒ In BFKL equation terms of the order (αs ln(s))n are systematically
summed at high energy (large s) and small strong coupling αs

⇒ The simplistic notion of bare two-gluon exchange gives way to the
BFKL Pomeron, which, in an alternative representation, can be seen
as the interaction of two reggeized gluons with one another

■ Beyond the BFKL Pomeron, the most elementary entity within
perturbative QCD is the exchange involving three interacting reggeized
gluons

□ The evolution of the three-gluon Odderon exchange as energy
increases is governed by the BKP equation

⇒ A bound state solution of this Odderon equation was obtained with
the intercept αO(0) = 1
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The Odderon input

■ Based on these QCD findings, we adopt in this work the simplest
conceivable form for the Odderon trajectory:

αO(t) = 1

■ The Odderon contribution is given by

F N
O (s, t) = β2

O(t) ηO(t)
(

s
s0

)αO(t)

⇒ ηO(t) = −ie−i π2 αO(t) is the odd signature factor

⇒ βO(t) is the elastic proton-Odderon vertex
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t dependence of the β vertices

■ βP(t) and βO(t) are parameterized accounting for the observed
deviation from a pure exponential behavior of the low-|t | dσ/dt data at
LHC energies

⇒ Behavior identified by the TOTEM Collaboration

□ The TOTEM group has extended the pure exponential to a cumulant
expansion,

dσ
dt

(t) =
dσ
dt

∣∣∣∣
t=0

exp

 Nb∑
n=1

bntn


where the optimal fit was achieved for Nb = 3, yielding χ2/DoF = 1.22
and a corresponding p-value of 8.0%
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t dependence of the β vertices

■ Based on this result, we have written the Pomeron- and
Odderon-proton vertices as

βP(t) = βP(0)e(At+Bt2+Ct3)/2

and

βO(t) = βO(0)eDt/2

respectively
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Models

■ We allow for the low mass diffractive dissociation (Good-Walker
formalism)

⇒ The Pomeron and Odderon couplings to the two diffractive states
|ϕk ⟩ are

βi,k (t) = (1 ± γ)βi(t)

with i = P or O, and γ = 0.55

□ The eikonalized amplitude in (s, t)-space is then given by

A(s, t) = is
∫ ∞

0
b db J0(bq)

[
1 − 1

4
ei(1+γ)2Ω(s,b)/2

−1
2

ei(1−γ2)Ω(s,b)/2 − 1
4

ei(1−γ)2Ω(s,b)/2
]

where Ω(s,b) is the total opacity
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Models

■ We consider two versions for the total opacity with different signs for
the Odderon contribution

□ In the first version, referred to as ‘Model I’, we have

Ω(s,b) = ΩP(s,b)∓ ΩO(s,b)

□ In the second version, called ‘Model II’, we have

Ω(s,b) = ΩP(s,b)± ΩO(s,b)

⇒ In both cases the upper sign is for pp and the lower sign is for p̄p
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Models

■ The total cross section and the ρ parameter are expressed in terms
of the nuclear eikonalized amplitude A(s, t):

σtot(s) =
4π
s

ImA(s, t = 0)

ρ(s) =
ReA(s, t = 0)
ImA(s, t = 0)

■ The full scattering amplitude is written as

F C+N(s, t) = A(s, t) + eiαϕ(t)F C(s, t)
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Models

■ Finally, the differential and the total elastic cross sections are given
by

dσ
dt

(s, t) =
π

s2

∣∣∣A(s, t) + eiαϕFC(s, t)
∣∣∣2

and

σel(s) =
π

s2

∫ 0

−∞
dt |A(s, t)|2

18 / 40



Results

■ The LHC has released exceptionally precise measurements of
diffractive processes

□ These measurements, particularly the total and differential cross
sections obtained from ATLAS and TOTEM Collaborations, enable us
to determine the Pomeron and Odderon parameters accurately

⇒ However, these experimental results unveil a noteworthy tension
between the TOTEM and ATLAS measurements

⇒ For instance, when comparing the TOTEM and the ATLAS result for
σpp

tot at
√

s = 8 TeV, the discrepancy between the values corresponds
to 2.6 σ
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Results

■ In order to systematically explore the tension between TOTEM and
ATLAS results, we perform global fits to pp and p̄p differential
cross-section data while considering three distinct datasets:

Ensemble A: dσp̄p,pp

dt

∣∣∣
CERN-ISR

+ dσp̄p

dt

∣∣∣
Sp̄pS

+ dσp̄p

dt

∣∣∣
Tevatron

+

dσpp

dt

∣∣∣
ATLAS/ALFA

Ensemble T: dσp̄p,pp

dt

∣∣∣
CERN-ISR

+ dσp̄p

dt

∣∣∣
Sp̄pS

+ dσp̄p

dt

∣∣∣
Tevatron

+ dσpp

dt

∣∣∣
TOTEM

Ensemble A⊕T: dσp̄p,pp

dt

∣∣∣
CERN-ISR

+ dσp̄p

dt

∣∣∣
Sp̄pS

+ dσp̄p

dt

∣∣∣
Tevatron

+

dσpp

dt

∣∣∣
ATLAS/ALFA

+ dσpp

dt

∣∣∣
TOTEM

⇒ We carry out global fits to the two distinct ensembles using a χ2

fitting procedure, where χ2
min follows a χ2 distribution with ν DoF

⇒ We adopt an interval χ2 − χ2
min corresponding to a 90% confidence

level (CL).
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Results

■ Since the absolute values of cross sections measured at the same
energy by different groups do not agree, we have introduced
normalization factors Ni for high-energy dσ/dt data

⇒ i = 7[A], 8[A], and 13[A] for the ATLAS/ALFA data and i = 7[T ],
8[T ], and 13[T ] for the TOTEM data (here the numbers within the
indices i correspond to the values of

√
s)

⇒ Analogous normalization factors are introduced for the Tevatron
data with i = 1.8[E ] and i = 1.8[C], i.e. N1.8[E ] for the E710 data and
N1.8[C] for the CDF data

⇒ Despite being the only data set measured at
√

s = 546 GeV, we
also included a normalization factor for dσp̄p/dt

∣∣√
s=546 GeV, namely

N546
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Results

■ Furthermore, when dealing with the data sets incorporating
normalization factors Ni , we make use of the formula

χ2 =
∑

ij

(Nidsth
ij − dsexp

ij )2

(δrem
ij )2 +

∑
i

(1 − Ni)
2

δ2
i

⇒ i denotes the particular set of data while j denotes the point tj in this
set of data

⇒ dsth is the theoretically calculated dσ/dt cross section while dsexp is
the value measured at the same ij point experimentally

⇒ δi is the normalization uncertainty of the given (i) set of data and
δrem

ij is the remaining error at the point ij calculated as
(δrem

ij )2 = δ2
tot ,ij − δ2

i

⇒ As a rule the value of δrem is dominantly the statistical error
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FIG.1. Description of the t dependence of the elastic pp- and p̄p-cross sections measured at CERN-ISR. The dashed and solid
curves depict the results obtained using Models I and II, respectively
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FIG.2. Description of the t dependence of the elastic pp- and p̄p-cross sections measured at the Sp̄pS, the Tevatron and the
LHC colliders. The dashed and solid curves depict the results obtained using Models I and II, respectively. The lower curves
describe the ATLAS/ALFA (E710) data while the upper curves correspond to the TOTEM (CDF) data; in both cases, the
normalization factors Ni are accounted for
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FIG.3. The same as Fig. 2 but for the CNI region where the Odderon contribution reveals itself
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FIG.4. The same as Figs. 2 and 3 but in another scale to better see the quality of precise 13 TeV data description
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FIG.5. Description of the total and elastic pp (•, ▲, ■) and p̄p (◦) cross sections. The dotted and dashed-dotted curves represent
the results for pp and p̄p channels, respectively, obtained from the global fit to Ensemble A ⊕ T using Model I. These curves are
indistinguishable. The solid and dashed curves represent the results for pp and p̄p channels, respectively, obtained from the
global fit to Ensemble A ⊕ T using Model II
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FIG.6. ρ parameter for pp (▲, ■) and p̄p (◦) elastic amplitude. The dotted and dashed-dotted curves represent the results for
ρpp and ρp̄p , respectively, obtained from the global fit to Ensemble A ⊕ T using the Model I. These curves are indistinguishable.
The solid and dashed curves represent the results for ρpp and ρp̄p , respectively, obtained from the global fit to Ensemble A ⊕ T
using the Model II

28 / 40



Table: Values of the parameters obtained in the global fits to Ensemble A⊕T .

Model I Model II Model II
βP(0) 2.247±0.013 2.259±0.016 2.307±0.022

ϵ 0.1173±0.0021 0.1180±0.0020 0.1134±0.0019
α′

IP (GeV−2) 0.124±0.024 0.128±0.022 0.133±0.023
A (GeV−2) 5.01±0.20 4.78±0.21 4.72±0.21
B (GeV−4) 6.61±0.99 6.7±1.1 6.9±1.2
C (GeV−6) 20.4±5.7 17.7±4.0 17.0±4.2

βO(0) (0.15 ×10−4) ±39 0.90±0.18 0.88±0.18
N546 0.941 0.933 0.958

N1.8[E ] 0.923 0.912 0.944
N1.8[C] 1.087 1.070 1.109
N7[A] 1.015 1.015 1.056
N8[A] 1.003 1.003 1.045
N13[A] 1.009 1.009 1.052
N7[T ] 1.077 1.077 1.121
N8[T ] 1.121 1.121 1.167
N13[T ] 1.150 1.150 1.200

ρpp(
√

s = 13 TeV) 0.114 0.111 0.109
ρp̄p(

√
s = 13 TeV) 0.114 0.119 0.116

Allowed Ni interval [0.85,1.15] [0.85,1.15] [0.80,1.20]
ν 504 504 504

χ2/ν 1.44 1.11 1.03
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Table: Predictions for σp̄p,pp
tot , σp̄p,pp

el , and ρp̄p,pp using Models I and II. These
results were derived for the scenario with D = A/2

Model I Model II
√

s (TeV) σ
pp
tot | σ

p̄p
tot (mb) σ

pp
el | σp̄p

el (mb) ρpp | ρp̄p σ
pp
tot | σ

p̄p
tot (mb) σ

pp
el | σp̄p

el (mb) ρpp | ρp̄p

0.541 64.2 | 64.2 13.2 | 13.2 0.130 | 0.130 63.8 | 64.1 13.3 | 13.5 0.117 | 0.144
1.8 78.0 | 78.0 17.6 | 17.6 0.124 | 0.124 77.6 | 77.8 17.7 | 17.9 0.116 | 0.133
7 95.9 | 95.9 23.9 | 23.9 0.117 | 0.117 95.7 | 95.9 24.0 | 24.2 0.113 | 0.123
8 97.9 | 97.9 24.5 | 24.5 0.116 | 0.116 97.6 | 97.8 24.7 | 24.8 0.113 | 0.122

13 105.1 | 105.1 27.2 | 27.2 0.114 | 0.114 104.9 | 105.1 27.3 | 27.4 0.111 | 0.119
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Table: Results using Model II
Ensemble A

D (GeV−2) 0.1A 0.3A 0.5A 0.7A 0.9A
βO(0) 0.93±0.22 0.85±0.22 0.80±0.21 0.77±0.19 0.74±0.18
βP(0) 2.370±0.035 2.384±0.036 2.386±0.037 2.386±0.040 2.388±0.039
ν 332 332 332 332 332

χ2/ν 0.96 0.97 0.97 0.97 0.96
ρpp(

√
s = 13 TeV) 0.105 0.105 0.105 0.104 0.104

ρp̄p(
√

s = 13 TeV) 0.113 0.112 0.113 0.114 0.114
σ

pp
tot (

√
s = 13 TeV) (mb) 98.0 98.0 98.0 98.0 98.0

σ
p̄p
tot (

√
s = 13 TeV) (mb) 98.2 98.2 98.2 98.2 98.1

Ensemble T
D (GeV−2) 0.1A 0.3A 0.5A 0.7A 0.9A

βO(0) 1.09±0.22 0.96±0.18 0.90±0.16 0.86±0.15 0.83±0.14
βP(0) 2.236±0.022 2.258±0.016 2.260±0.016 2.260±0.017 2.259±0.018
ν 418 418 418 418 418

χ2/ν 1.28 1.30 1.29 1.28 1.27
ρpp(

√
s = 13 TeV) 0.112 0.112 0.111 0.111 0.110

ρp̄p(
√

s = 13 TeV) 0.119 0.118 0.119 0.119 0.120
σ

pp
tot (

√
s = 13 TeV) (mb) 104.9 104.9 104.9 104.9 104.9

σ
p̄p
tot (

√
s = 13 TeV) (mb) 105.1 105.1 105.1 105.1 105.1

Ensemble A ⊕ T
D (GeV−2) 0.1A 0.3A 0.5A 0.7A 0.9A

βO(0) 1.09±0.24 0.95±0.19 0.90±0.18 0.86±0.17 0.83±0.16
βP(0) 2.235±0.023 2.257±0.016 2.259±0.016 2.258±0.016 2.258±0.017
ν 504 504 504 504 504

χ2/ν 1.11 1.12 1.11 1.10 1.09
ρpp(

√
s = 13 TeV) 0.112 0.112 0.111 0.111 0.110

ρp̄p(
√

s = 13 TeV) 0.119 0.118 0.119 0.119 0.120
σ

pp
tot (

√
s = 13 TeV) (mb) 104.9 104.9 104.9 104.9 104.9

σ
p̄p
tot (

√
s = 13 TeV) (mb) 105.1 105.1 105.1 105.1 105.1
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FIG.7. Description of ρ parameter for pp elastic amplitude measured by TOTEM (▲) and ATLAS/ALFA (■) Collaborations. The
dashed (solid) curve represents the predicted ρpp from the global fit using Ensemble T (Ensemble A)
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Conclusions

■ The differential pp and p̄p cross sections dσ/dt at low |t | < 0.1
GeV2 and collider energies (from

√
s > 50 GeV to 13 TeV) are

successfully described (χ2/ν = 1.11) within the two-channel eikonal
model

□ To avoid the double counting we do not include in the fit the σtot and
ρ data (which were obtained from the description of the same dσ/dt
data points)

■ The model accounts for the screening of the Odderon contribution
by the Pomerons including the C-even (Pomeron) and C-odd
(Odderon) multiple exchanges

■ To resolve the discrepancy between the TOTEM and ATLAS/ALFA
(CDF and E710 in the Tevatron case) data we introduce the
normalization coefficients, Ni writing the theoretical prediction as
dσexp/dt = NidσTh/dt
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Conclusions

■ We show that the presence of C-odd (Odderon) contribution
essentially improves the fit; however it does not noticeably change the
predicted value of ρpp at 13 TeV

■ The main lessons about the Odderon coming from this study are:

=⇒ The description using the Odderon improves the fit (the χ2/ν is the
lowest one)

=⇒ The sign of the Odderon amplitude needed to describe the very
low |t | data is opposite to that predicted by the perturbative QCD
three-gluon exchange contribution
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Conclusions

=⇒ The quality of the description weakly depends on the Odderon
t-slope, D, (leading to practically the same values of σtot and ρ).
However, for smaller D we need larger coupling βO to compensate for
a stronger absorption caused by the Pomeron screening at small
impact parameters b

=⇒ The Odderon-proton coupling, βO, is smaller than that for the
Pomeron, βP. For D = A/2 we get βO/βP = 0.40, however after
accounting for screening by the Pomeron the final C-odd contribution
to ρ at 13 TeV becomes quite small, δρ = (ρp̄p − ρpp)/2 ≤ 0.004 (see
Table 1) and it will be challenging to enlarge it. Otherwise, we will get
too large ρp̄p at

√
s ∼ 541 GeV in disagreement with the data
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THANK YOU
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Resummations in QCD

■ Every physical observable can be written, in pQCD, as a power
series in αs

=⇒ in these series the coupling constant is accompanied by large
logarithms, which need to be resummed

=⇒ according to the type and to the powers of logarithms that are
effectively resummed one gets different evolution equations

■ The solution of the DGLAP equation sums over all orders in αs the
contributions from leading, single, collinear logarithms of the form
αs ln

(
Q2/Q2

0
)

=⇒ it does not include leading, single, soft singularities of the form
αs ln (1/x), which are treated instead by the BFKL equation

■ The BFKL equation describes the x-evolution of PDFs at fixed Q2
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Resummations in QCD
■ The phase space regions which contribute these logarithms
enhancements are associated with configurations in which successive
partons have strongly ordered transverse, kT , or longitudinal, kL ≡ x ,
momenta:

⇒ αsLQ ∼ 1, αsLx ≪ 1: Q2 ≫ k2
T ,n ≫ · · · ≫ k2

T ,1 ≫ Q2
0

⇒ αsLx ∼ 1, αsLQ ≪ 1: x ≪ xn ≪ · · · ≪ x1 ≪ x0

■ At small-x and slow Q2 (where gluons are dominant) we do not have
strongly ordered kT

⇒ we have to integrate over the full range of kT

⇒ this leads us to work with the unintegrated gluon PDF
g̃(x , k2

T ):

xg(x ,Q2) =

∫ Q2
dk2

T

k2
T

g̃(x , k2
T )
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Positivity

■ The phase factor is associated with the positivity property

⇒ However, unlike Pomeron, the Odderon is not constrained by
positivity requirements

⇒ From a theoretical standpoint, this implies that it is not possible to
determine the phase of the Odderon mathematically

□ This issue can be succinctly grasped: in the forward direction the
physical amplitudes Fpp

p̄p (s) can be written as Fpp
p̄p (s) = F+(s)± F−(s)

□ Considering that the only relevant contributions are those arising
from the Pomeron and the Odderon exchanges, we can write the
symmetric and antisymmetric amplitudes as F+(s) = RP(s) + iIP(s)
and F−(s) = RO(s) + iIO(s)
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□ From the optical theorem, we have sσpp,p̄p
tot (s) = 4π ImFpp

p̄p (s) > 0,
which implies that

ImFpp
p̄p (s) = IP(s)± IO(s) > 0

and, in turn,

IP(s) > |IO(s)|

As a consequence,

IP(s) =
s
2

[
σpp

tot(s) + σp̄p
tot (s)

]
> 0

while

IO(s) =
s
2

[
σpp

tot(s)− σp̄p
tot (s)

]
is not bound by the same positivity requirements
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