Odderon contribution in light of the LHC low-*t* **data**

Emerson Luna *Instituto de Física Universidade Federal do Rio Grande do Sul*

> *Diffraction and Low-x Physics* Palermo, Italy, 2024

∗ in collaboration with V. A. Khoze and M. G. Ryskin

Outline

- Brief introduction to Odderon
- Formalism: Pomeron and Odderon inputs
- The tension between the TOTEM and ALFA/ATLAS measurements
- Results
- Conclusions

Introduction

E The TOTEM publication of the measurements of the σ_{tot}^{pp} and the ρ^{pp} parameter at 13 TeV, prompted a renewal of interest in the potential existence of the high-energy *C*-odd (Odderon) contribution.

 \Rightarrow The observed value $\rho = (0.09 - 0.10) \pm 0.01$ turned out to be smaller than the predicted value ($\rho = 0.13 - 0.14$) based on Disp. Rel.

 \square The new ATLAS/ALFA data recently confirmed this value of ρ

 \Rightarrow However, the value of σ_{tot}^{pp} at 13 TeV reported by the ATLAS/ALFA team is approximately 5% lower than the average of values determined by TOTEM

Introduction

The relatively small value of ρ can be explained by the admixture of the *C*-odd amplitude, which survives at high LHC energies

 \Rightarrow Such amplitude with the intercept α_{Odd} close to 1 was predicted by the perturbative QCD

 \square Another indication in favor of the Odderon emerged when the $d\sigma^{\bar{p}p}/dt$ data at $\sqrt{s} = 1.96$ TeV was compared with the corresponding *pp* cross section (measured at 2.76 TeV but extrapolated to 1.96 TeV) in the diffractive dip region

 \Rightarrow A clear difference was observed

 \Rightarrow It is important to emphasize that this result depends on the specific extrapolation method between different energy levels

Introduction

■ It should be noted that at very low *t* close to zero and in the diffractive dip region, we deal with different *C*-odd contributions

 \Rightarrow To get a well-pronounced dip-bump structure near the dip in $d\sigma^{pp}/dt|_{2.76 TeV}$ and rather flat behavior of $d\sigma^{\bar{p}p}/dt|_{1.96 TeV}$, the real part of the Odderon *pp* amplitude should be positive (in agreement with perturbative QCD expectation for the three gluon exchange)

 \Rightarrow On the other hand, to explain the low value of ρ at $t=0$, we need a negative Odderon real part

 \Rightarrow This negative real part could be induced by non-pert. effects

Formalism

■ Our analysis is focused on differential cross-section data involving very small values of *t*

 \Rightarrow It requires consideration of the Coulomb-nuclear interference (CNI) region:

 $\bm{F}^{C+N} = \bm{F}^N + \bm{e}^{i\alpha\phi(t)}\bm{F}^C$

□ We adopt

$$
\phi(t) = \kappa \left[\gamma + \ln \left(\frac{\mathcal{B}|t|}{2} \right) + \ln \left(1 + \frac{8}{B\Lambda^2} \right) + \frac{4|t|}{\Lambda^2} \ln \left(\frac{\Lambda^2}{4|t|} \right) - \frac{2|t|}{\Lambda^2} \right]
$$

where κ flips sign when going from *pp* ($\kappa = -1$) to $\bar{p}p$ ($\kappa = +1$)

Formalism

 \Rightarrow Λ^2 is fixed at 0.71 GeV²

⇒ *B* is the *t* slope of elastic *d*σ/*dt* ∝ *exp*(*Bt*) cross-section

 $\Rightarrow \gamma = 0.577...$ is the Euler-Mascheroni constant

 $\Rightarrow \alpha$ is the electromagnetic coupling:

$$
\alpha(\mathbf{q}^2) = \frac{\alpha(\mathbf{0})}{1 - \frac{\alpha(\mathbf{0})}{3\pi} \ln\left(\frac{\mathbf{q}^2 + m_{\mathbf{e}}^2}{m_{\mathbf{e}}^2}\right)}
$$

where $\alpha(0) \approx 1/137$

Formalism

■ The Coulomb amplitude is expressed as

$$
F^C = \kappa s \frac{2\alpha}{|t|} G^2(t)
$$

where *G*(*t*) is the electromagnetic form factor of the proton:

$$
G(t) = \left[\frac{\Lambda^2}{\Lambda^2 + q^2}\right]^2
$$

 \square To account for the eikonalization, it is convenient to calculate the nuclear amplitude in terms of opacities:

$$
\Omega_i(\boldsymbol{s},b)=\frac{2}{s}\int_0^\infty q\,dq\,J_0(bq)\,F_i^N(\boldsymbol{s},t)
$$

where $i = P$, \odot represent the Pomeron and Odderon exchanges

Pomeron input

■ The single Pomeron contribution is given by

$$
\mathcal{F}_{\mathbb{P}}^{N}(\boldsymbol{s},t)=\beta_{\mathbb{P}}^{2}(t)\,\eta_{\mathbb{P}}(t)\left(\frac{\boldsymbol{s}}{\boldsymbol{s}_0}\right)^{\alpha_{\mathbb{P}}(t)}
$$

 $\Rightarrow \eta_\mathbb{P}(t) = -e^{-i\frac{\pi}{2}\alpha_\mathbb{P}(t)}$ is the even signature factor

 $\Rightarrow \beta_{\mathbb{P}}(t)$ is the elastic proton-Pomeron vertex

 $\Rightarrow \alpha_{\mathbb{P}}(t)$ is the Pomeron trajectory,

$$
\alpha_{\mathbb{P}}(t)=1+\epsilon+\alpha_{\mathbb{P}}'t+\frac{m_{\pi}^2\beta_{\pi}^2}{32\pi^3}\,h(\tau)
$$

where

$$
h(\tau) = -\frac{4}{\tau} F_{\pi}^{2}(t) \left[2\tau - (1+\tau)^{3/2} \ln \left(\frac{\sqrt{1+\tau}+1}{\sqrt{1+\tau}-1} \right) + \ln \left(\frac{m^{2}}{m_{\pi}^{2}} \right) \right]
$$

with $\epsilon > 0$, $\tau = 4 m_\pi^2/|t|$, $m = 1$ GeV, and $m_\pi = 139.6$ MeV

The Odderon input

E From the standpoint of QCD (at the lowest order) the $C = +1$ amplitude arises from the exchange of two gluons and the $C = -1$ amplitude from the exchange of three gluons

■ Extensive theoretical studies have been directed towards uncovering corrections to these results, particularly in higher orders

 \square In this scenario, the leading-log approximation allows for the summation of certain higher-order contributions to physical observables in high-energy particle scattering processes

 \Rightarrow This approach was widely used in the study of the QCD-Pomeron through the BFKL equation

The Odderon input

 \Rightarrow In BFKL equation terms of the order $(\alpha_s \ln(s))^n$ are systematically summed at high energy (large *s*) and small strong coupling α*^s*

 \Rightarrow The simplistic notion of bare two-gluon exchange gives way to the BFKL Pomeron, which, in an alternative representation, can be seen as the interaction of two reggeized gluons with one another

■ Beyond the BFKL Pomeron, the most elementary entity within perturbative QCD is the exchange involving three interacting reggeized gluons

 \square The evolution of the three-gluon Odderon exchange as energy increases is governed by the BKP equation

 \Rightarrow A bound state solution of this Odderon equation was obtained with the intercept $\alpha_{\mathbb{O}}(0) = 1$

The Odderon input

■ Based on these QCD findings, we adopt in this work the simplest conceivable form for the Odderon trajectory:

$$
\alpha_{\mathbb{O}}(t)=1
$$

■ The Odderon contribution is given by

$$
\mathit{F}^{N}_{\mathbb{O}}(s,t)=\beta^2_{\mathbb{O}}(t)\,\eta_{\mathbb{O}}(t)\left(\frac{s}{s_0}\right)^{\alpha_{\mathbb{O}}(t)}
$$

 $\Rightarrow \eta_{\mathbb{O}}(t)=-i e^{-i\frac{\pi}{2}\alpha_{\mathbb{O}}(t)}$ is the odd signature factor

 \Rightarrow $\beta_{\Omega}(t)$ is the elastic proton-Odderon vertex

t **dependence of the** β **vertices**

 \blacksquare $\beta_{\mathbb{P}}(t)$ and $\beta_{\mathbb{O}}(t)$ are parameterized accounting for the observed deviation from a pure exponential behavior of the low-|*t*| *d*σ/*dt* data at LHC energies

 \Rightarrow Behavior identified by the TOTEM Collaboration

 \square The TOTEM group has extended the pure exponential to a cumulant expansion,

$$
\frac{d\sigma}{dt}(t) = \left. \frac{d\sigma}{dt} \right|_{t=0} \exp \left(\sum_{n=1}^{N_b} b_n t^n \right)
$$

where the optimal fit was achieved for $\textit{N}_{b} = 3$, yielding $\chi^{2}/\textit{DoF} = 1.22$ and a corresponding *p*-value of 8.0%

t **dependence of the** β **vertices**

■ Based on this result, we have written the Pomeron- and Odderon-proton vertices as

$$
\beta_{\mathbb{P}}(t)=\beta_{\mathbb{P}}(0)e^{(At+Bt^2+ Ct^3)/2}
$$

and

 $\beta_\mathbb{O}(t) = \beta_\mathbb{O}(0) e^{Dt/2}$

respectively

■ We allow for the low mass diffractive dissociation (Good-Walker formalism)

 \Rightarrow The Pomeron and Odderon couplings to the two diffractive states $|\phi_{\bf k}\rangle$ are

 $\beta_{i,k}(t) = (1 \pm \gamma)\beta_i(t)$

with $i = P$ or \mathbb{O} , and $\gamma = 0.55$

 \square The eikonalized amplitude in (s, t) -space is then given by

$$
\mathcal{A}(s,t) = is \int_0^\infty b \, db \, J_0(bq) \left[1 - \frac{1}{4} \, e^{i(1+\gamma)^2 \Omega(s,b)/2} - \frac{1}{2} \, e^{i(1-\gamma)^2 \Omega(s,b)/2} - \frac{1}{4} \, e^{i(1-\gamma)^2 \Omega(s,b)/2} \right]
$$

where $\Omega(s, b)$ is the total opacity

■ We consider two versions for the total opacity with different signs for the Odderon contribution

□ In the first version, referred to as 'Model **I**', we have

 $\Omega(s, b) = \Omega_{\mathbb{P}}(s, b) \mp \Omega_{\mathbb{O}}(s, b)$

□ In the second version, called 'Model **II**', we have

 $\Omega(s, b) = \Omega_{\mathbb{P}}(s, b) \pm \Omega_{\mathbb{O}}(s, b)$

 \Rightarrow In both cases the upper sign is for *pp* and the lower sign is for $\bar{p}p$

The total cross section and the ρ **parameter are expressed in terms** of the nuclear eikonalized amplitude $A(s, t)$:

$$
\sigma_{tot}(s) = \frac{4\pi}{s} \text{Im } A(s, t = 0)
$$

$$
\rho(\mathbf{s}) = \frac{\operatorname{Re} \mathcal{A}(\mathbf{s}, t=0)}{\operatorname{Im} \mathcal{A}(\mathbf{s}, t=0)}
$$

■ The full scattering amplitude is written as

$$
F^{C+N}(s,t) = A(s,t) + e^{i\alpha\phi(t)}F^{C}(s,t)
$$

■ Finally, the differential and the total elastic cross sections are given by

$$
\frac{d\sigma}{dt}(\mathbf{s},t)=\frac{\pi}{\mathbf{s}^2}\left|\mathcal{A}(\mathbf{s},t)+e^{i\alpha\phi}\mathcal{F}^C(\mathbf{s},t)\right|^2
$$

and

$$
\sigma_{el}(s) = \frac{\pi}{s^2} \int_{-\infty}^0 dt \, |\mathcal{A}(s,t)|^2
$$

■ The LHC has released exceptionally precise measurements of diffractive processes

 \square These measurements, particularly the total and differential cross sections obtained from ATLAS and TOTEM Collaborations, enable us to determine the Pomeron and Odderon parameters accurately

 \Rightarrow However, these experimental results unveil a noteworthy tension between the TOTEM and ATLAS measurements

 \Rightarrow For instance, when comparing the TOTEM and the ATLAS result for $\frac{p}{\sigma_{tot}}$ at $\sqrt{s} = 8$ TeV, the discrepancy between the values corresponds to 2.6 σ

■ In order to systematically explore the tension between TOTEM and ATLAS results, we perform global fits to *pp* and $\bar{p}p$ differential cross-section data while considering three distinct datasets:

Ensemble A:
$$
\frac{d\sigma^{p\rho,pp}}{dt}\Big|_{\text{CERN-ISR}} + \frac{d\sigma^{p\rho}}{dt}\Big|_{\text{S}\bar{p}pS} + \frac{d\sigma^{p\rho}}{dt}\Big|_{\text{Tevatron}} + \frac{d\sigma^{p\rho}}{dt}\Big|_{\text{ATLAS/ALFA}}
$$

\n**Ensemble T:** $\frac{d\sigma^{p\rho,pp}}{dt}\Big|_{\text{CERN-ISR}} + \frac{d\sigma^{p\rho}}{dt}\Big|_{\text{S}\bar{p}pS} + \frac{d\sigma^{p\rho}}{dt}\Big|_{\text{Tevatron}} + \frac{d\sigma^{p\rho}}{dt}\Big|_{\text{TOTEM}}$
\n**Ensemble A** \oplus **T:** $\frac{d\sigma^{p\rho,pp}}{dt}\Big|_{\text{CERN-ISR}} + \frac{d\sigma^{p\rho}}{dt}\Big|_{\text{S}\bar{p}pS} + \frac{d\sigma^{p\rho}}{dt}\Big|_{\text{Tevatron}} + \frac{d\sigma^{p\rho}}{dt}\Big|_{\text{Tevatron}}$

 \Rightarrow We carry out global fits to the two distinct ensembles using a χ^2 fitting procedure, where $\chi^2_{\sf min}$ follows a χ^2 distribution with ν DoF

 \Rightarrow We adopt an interval $\chi^2-\chi^2_{\sf min}$ corresponding to a 90% confidence level (CL).

■ Since the absolute values of cross sections measured at the same energy by different groups do not agree, we have introduced normalization factors *Nⁱ* for high-energy *d*σ/*dt* data

 \Rightarrow *i* = 7[A], 8[A], and 13[A] for the ATLAS/ALFA data and *i* = 7[T], 8[*T*], and 13[*T*] for the TOTEM data (here the numbers within the indices *ⁱ* correspond to the values of [√] *s*)

 \Rightarrow Analogous normalization factors are introduced for the Tevatron data with $i=1.8[\bm{E}]$ and $i=1.8[\bm{C}]$, i.e. $\bm{N_{1.8[\bm{E}]}}$ for the E710 data and $\mathcal{N}_{1.8 [C]}$ for the CDF data

 \Rightarrow Despite being the only data set measured at $\sqrt{s} =$ 546 GeV, we also included a normalization factor for $\left. d\sigma^{\bar{p}p}/dt \right|_{\sqrt{\bar{s}}=546\,\mathrm{GeV}},$ namely *N*⁵⁴⁶

 \blacksquare Furthermore, when dealing with the data sets incorporating normalization factors *Nⁱ* , we make use of the formula

$$
\chi^{2} = \sum_{ij} \frac{(N_{i} ds_{ij}^{th} - ds_{ij}^{exp})^{2}}{(\delta_{ij}^{rem})^{2}} + \sum_{i} \frac{(1 - N_{i})^{2}}{\delta_{i}^{2}}
$$

⇒ *i* denotes the particular set of data while *j* denotes the point *t^j* in this set of data

⇒ *dsth* is the theoretically calculated *d*σ/*dt* cross section while *dsexp* is the value measured at the same *ij* point experimentally

 \Rightarrow δ_i is the normalization uncertainty of the given (*i*) set of data and $\delta_{ij}^{\prime em}$ is the remaining error at the point ij calculated as $(\delta_{ij}^{rem})^2 = \delta_{tot,ij}^2 - \delta_i^2$

 \Rightarrow As a rule the value of δ^{rem} is dominantly the statistical error

FIG.1. Description of the *t* dependence of the elastic *pp*- and *pp*-cross sections measured at CERN-ISR. The dashed and solid curves depict the results obtained using Models I and II, respectively

FIG.2. Description of the *t* dependence of the elastic *pp*- and *pp*-cross sections measured at the *SppS*, the Tevatron and the LHC colliders. The dashed and solid curves depict the results obtained using Models I and II, respectively. The lower curves describe the ATLAS/ALFA (E710) data while the upper curves correspond to the TOTEM (CDF) data; in both cases, the normalization factors *Nⁱ* are accounted for

FIG.3. The same as Fig. 2 but for the CNI region where the Odderon contribution reveals itself

FIG.4. The same as Figs. 2 and 3 but in another scale to better see the quality of precise 13 TeV data description

FIG.5. Description of the total and elastic pp (•, ▲, ■) and $\bar{p}p$ (◦) cross sections. The dotted and dashed-dotted curves represent the results for *pp* and $\bar{p}p$ channels, respectively, obtained from the global fit to Ensemble A \oplus T using Model I. These curves are indistinguishable. The solid and dashed curves represent the results for *pp* and $\bar{p}p$ channels, respectively, obtained from the global fit to Ensemble A ⊕ T using Model II

\sqrt{s} (GeV)

FIG.6. *ρ* parameter for *pp* (▲, ■) and $\bar{p}p$ (○) elastic amplitude. The dotted and dashed-dotted curves represent the results for *p^{pp}* and *p^{pp}*, respectively, obtained from the global fit to Ensemble A ⊕ T using the Model I. These curves are indistinguishable. The solid and dashed curves represent the results for p^{pp} and p^{pp}, respectively, obtained from the global fit to Ensemble A ⊕ T using the Model II

Table: Values of the parameters obtained in the global fits to Ensemble *A* ⊕ *T*.

Table: Predictions for $\sigma_{tot}^{\bar{p}p, pp}$, $\sigma_{el}^{\bar{p}p, pp}$, and $\rho^{\bar{p}p, pp}$ using Models I and II. These results were derived for the scenario with $D=A/2$

dashed (solid) curve represents the predicted p^{pp} from the global fit using Ensemble T (Ensemble A)

Conclusions

■ The differential *pp* and $\bar{p}p$ cross sections $d\sigma/dt$ at low $|t| < 0.1$ GeV² and collider energies (from \sqrt{s} > 50 GeV to 13 TeV) are successfully described ($\chi^2/\nu=1.11)$ within the two-channel eikonal model

 \square To avoid the double counting we do not include in the fit the σ_{tot} and ρ data (which were obtained from the description of the same *d*σ/*dt* data points)

■ The model accounts for the screening of the Odderon contribution by the Pomerons including the *C*-even (Pomeron) and *C*-odd (Odderon) multiple exchanges

■ To resolve the discrepancy between the TOTEM and ATLAS/ALFA (CDF and E710 in the Tevatron case) data we introduce the normalization coefficients, *Nⁱ* writing the theoretical prediction as $d\sigma^{exp}/dt = N_i d\sigma^{Th}/dt$

Conclusions

■ We show that the presence of *C*-odd (Odderon) contribution essentially improves the fit; however it does not noticeably change the predicted value of $\rho^{\rho\rho}$ at 13 TeV

■ The main lessons about the Odderon coming from this study are:

 \Longrightarrow The description using the Odderon improves the fit (the χ^2/ν is the lowest one)

 \implies The sign of the Odderon amplitude needed to describe the very low |*t*| data is opposite to that predicted by the perturbative QCD three-gluon exchange contribution

Conclusions

 \implies The quality of the description weakly depends on the Odderon *t*-slope, *D*, (leading to practically the same values of σ_{tot} and ρ). However, for smaller *D* we need larger coupling β_0 to compensate for a stronger absorption caused by the Pomeron screening at small impact parameters *b*

 \Rightarrow The Odderon-proton coupling, β_0 , is smaller than that for the Pomeron, $\beta_{\mathbb{P}}$. For $D = A/2$ we get $\beta_{\mathbb{O}}/\beta_{\mathbb{P}} = 0.40$, however after accounting for screening by the Pomeron the final *C*-odd contribution to ρ at 13 TeV becomes quite small, $\delta \rho = (\rho^{\bar{\rho} \rho} - \rho^{\rho \rho})/2 \leq$ 0.004 (see Table [1\)](#page-28-0) and it will be challenging to enlarge it. Otherwise, we will get Table 1) and it will be challenging to emarge it. Otherwise, we
too large $\rho^{\bar{\rho}\rho}$ at \sqrt{s} ∼ 541 GeV in disagreement with the data

THANK YOU

Resummations in QCD

■ Every physical observable can be written, in pQCD, as a power series in α*^s*

 \implies in these series the coupling constant is accompanied by large logarithms, which need to be resummed

 \implies according to the type and to the powers of logarithms that are effectively resummed one gets different evolution equations

The solution of the DGLAP equation sums over all orders in α_s **the** contributions from leading, single, collinear logarithms of the form $\alpha_{\scriptscriptstyle S}$ ln $\left(Q^2/Q_0^2\right)$

 \implies it does not include leading, single, soft singularities of the form α_s ln (1/*x*), which are treated instead by the BFKL equation

■ The BFKL equation describes the *x*-evolution of PDFs at fixed Q^2

Resummations in QCD

■ The phase space regions which contribute these logarithms enhancements are associated with configurations in which successive partons have strongly ordered transverse, k_T , or longitudinal, $k_I \equiv x$, momenta:

 \Rightarrow $\alpha_s L_Q \sim$ 1, $\alpha_s L_X \ll$ 1: $Q^2 \gg k_{\mathcal{T},n}^2 \gg \cdots \gg k_{\mathcal{T},1}^2 \gg Q_0^2$

⇒ α*sL^x* ∼ 1, α*sL^Q* ≪ 1: *x* ≪ *xⁿ* ≪ · · · ≪ *x*¹ ≪ *x*⁰

■ At small-*x* and slow Q^2 (where gluons are dominant) we do not have strongly ordered *k^T*

 \Rightarrow we have to integrate over the full range of k_T

⇒ this leads us to work with the *unintegrated* gluon PDF $\tilde{g}(x, k_T^2)$:

$$
xg(x,Q^2) = \int^{Q^2} \frac{dk_T^2}{k_T^2} \tilde{g}(x,k_T^2)
$$

Positivity

■ The phase factor is associated with the positivity property

 \Rightarrow However, unlike Pomeron, the Odderon is not constrained by positivity requirements

 \Rightarrow From a theoretical standpoint, this implies that it is not possible to determine the phase of the Odderon mathematically

 \square This issue can be succinctly grasped: in the forward direction the physical amplitudes F *pp* $\frac{p\rho}{\bar{p} \rho}(s)$ can be written as $\mathcal{F}^{pp}_{\bar{p} \rho}$ *pp*¯ (*s*) = *F* ⁺(*s*) ± *F* [−](*s*)

 \square Considering that the only relevant contributions are those arising from the Pomeron and the Odderon exchanges, we can write the symmetric and antisymmetric amplitudes as $F^+(s) = R_{\mathbb{P}}(s) + i I_{\mathbb{P}}(s)$ $\mathsf{and}\; \bar{F}^{-}(s) = R_{\mathbb{O}}(s) + i \bar{I}_{\mathbb{O}}(s)$

 \square From the optical theorem, we have $s\sigma_{tot}^{pp,\bar{p}p}(s) = 4\pi$ Im $\mathcal{F}_{\bar{p}p}^{pp}$ $\frac{p}{\bar{p}p}(s) > 0,$ which implies that

$$
\text{Im}\,\mathcal{F}^{pp}_{\bar{p}p}(s)=\mathit{I}_{\mathbb{P}}(s)\pm\mathit{I}_{\mathbb{O}}(s)>0
$$

and, in turn,

 $I_P(s) > |I_{\odot}(s)|$

As a consequence,

$$
\textit{l}_{\mathbb{P}}(s) = \frac{s}{2}\left[\sigma_{\textit{tot}}^{\textit{pp}}(s) + \sigma_{\textit{tot}}^{\textit{pp}}(s)\right] > 0
$$

while

$$
I_{\mathbb{O}}(s) = \frac{s}{2} \left[\sigma_{tot}^{pp}(s) - \sigma_{tot}^{\bar{p}p}(s) \right]
$$

is not bound by the same positivity requirements