

Sep 8-14, 2024 Hotel Tonnara Trabia, Palermo, Sicily

https://indico.cern.ch/event/1354173

Absorptive Corrections to the Electromagnetic Form Factor in High-Energy Elastic Proton-Proton Scattering

A.A. Poblaguev Brookhaven National Laboratory

The of goal of this research

Numerous $p^{\uparrow}A$ analyzing powers have been measured using the RHIC Polarized Atomic Hydrogen Gas Jet Target (HJET).

The primary goal of this research was to develop a parametrization for the absorptive correction to the non-flip electromagnetic form factor, which can be conveniently applied in HJET data analysis.

Absorptive corrections to the spin-flip amplitude are not considered here.

0.03

0.005

0.01

0.015

|t| (GeV²)

0.02

The Eikonal Phases in Elastic pp Scattering

The Coulomb amplitude:

$$f_C^{\text{Born}}(t) = \frac{2\alpha}{t} e^{B_E t/2}$$
$$\chi_C(b) = \int_0^\infty q_T dq_T \frac{-2\alpha}{q_T^2 + \lambda^2} e^{-B_E q_T^2/2} J_0(bq_T)$$

$$B_E = \frac{2\langle r_E^2 \rangle}{3} = 12.1 \text{ GeV}^{-2}$$
$$q_T^2 \approx -t$$
$$-t_c = 8\pi\alpha/\sigma_{\text{tot}} \approx 0.002 \text{ GeV}^2$$

The hadronic amplitude:

$$f_N^{\text{Born}}(t) = (i \pm \rho) \frac{\sigma_{\text{tot}}}{4\pi} e^{Bt/2}$$
$$= (i + \rho) \frac{2\alpha}{-t_c} e^{Bt/2}$$
$$\gamma_N(b) = \int_0^\infty q_T dq_T \frac{2\alpha}{-t_c} e^{-Bq_T^2/2} J_0(bq_T)$$
$$= \frac{2\alpha}{-Bt_c} e^{-b^2/2B}$$

Soft photon corrections to the amplitudes

 (\mathbf{C})

 (\mathbf{N})

$$\frac{(\mathbf{C})}{\mathbf{C}} \qquad (\mathbf{N}) \qquad (\mathbf{NC})$$

$$f_{C}^{\gamma}(t) = \int_{0}^{\infty} bdb J_{0}(bq_{T}) \ i [1 - e^{i\chi_{C}(b)}] = f_{C}^{\mathrm{Born}}(t) e^{i\Phi_{C}^{\lambda}}$$

$$f_{N+NC}^{\gamma}(t) = (i + \rho) \int_{0}^{\infty} bdb J_{0}(bq_{T}) \ e^{i\chi_{C}(b)} \gamma_{N}(b) = f_{N}^{\mathrm{Born}}(t) e^{i\Phi_{N}^{\lambda}c}$$

$$f_{N}(t) = (i + \rho) \int_{0}^{\infty} bdb J_{0}(bq_{T}) \gamma_{N}(b) = f_{N}^{\mathrm{Born}}(t)$$

In lowest order of α and $\lambda \to 0$, the phases Φ_C^{λ} and Φ_{NC}^{λ} were calculated analytically [B.Z. Kopeliovich and A.V. Tarasov, Phys. Lett. B497, 44 (201)]

$$\Phi_C^{\lambda}/\alpha = \ln \frac{B_E \lambda^2}{2} + 2\gamma + \ln w - \operatorname{Ei}\left(\frac{w}{2}\right) + e^w \left[2E_1(w) - E_1\left(\frac{w}{2}\right)\right] \qquad \gamma = 0.5772 \dots$$

$$\Phi_{\mathrm{NC}}^{\lambda}/\alpha = \ln \frac{B_E \lambda^2}{2} + 2\gamma + \ln w + \ln \frac{B^2}{B_E^2} - \operatorname{Ei}(z) \approx \ln \frac{B_E \lambda^2}{2} + \gamma + \ln \frac{B + B_E}{B_E} \qquad w = -B_E t/2$$

$$z = -B^2 t/2(B + B_E)$$

The phase difference is independent of the photon mass λ

$$\delta_C(t) = \Phi_C^{\lambda} - \Phi_{NC}^{\lambda} = -\alpha \left[\gamma + \ln \frac{(B + B_E)|t_c|}{2} \right] + \alpha \ln \frac{t_c}{t} = \alpha \left[\ln \frac{2}{|t|(B + 8/\Lambda^2)} - \gamma \right]$$

Diffraction and Low-x 2024.09.10

Absorptive corrections in elastic pp scattering

The Absorptive Correction

- Typically, the proton electromagnetic form factor slope B_E used in high-energy pp data analysis is determined in ep scattering, which is free from initial/final state strong interactions between the colliding particles.
- In *pp* scattering, absorptive corrections, arising from the dependence of inelastic scattering
 probability on the impact parameter *b*, may significantly reduce the partial elastic amplitude at
 small impact parameters.
- To account for this correction, an absorptive factor can be applied:

• However, the result explicitly depends on the photon mass λ .

i

Elimination of the Photon Mass Dependence

• It can be straightforwardly shown that adding a constant term to the eikonal phase

 $\chi_C(b) \to \chi_C(b) + \chi_0$

results in corresponding alteration of the both Coulomb phases:

 $\Phi_{C}^{\lambda} \to \Phi_{C}^{\lambda} + \chi_{0} \text{ and } \Phi_{NC}^{\lambda} \to \Phi_{NC}^{\lambda} + \chi_{0}$ For example, $e^{i[\chi_{C}(b) + \chi_{0}]} \gamma_{N}(b) = e^{i\chi_{0}} \times e^{i\chi_{C}(b)} \gamma_{N}(b).$

• Focusing on the infrared divergence, one finds,

$$\chi_{C}(b,\lambda) = -2\alpha \int_{0}^{\infty} \frac{q_{T} dq_{T}}{q_{T}^{2} + \lambda^{2}} e^{-B_{E}q_{T}^{2}/2} J_{0}(bq_{T}) \implies -\alpha \int_{0}^{q_{T}^{max}(b)} \frac{dq_{T}^{2}}{q_{T}^{2} + \lambda^{2}} \implies \chi_{C}(b,\lambda_{2}) - \chi_{C}(b,\lambda_{1}) \approx \alpha \ln \frac{\lambda_{2}^{2}}{\lambda_{1}^{2}}$$
$$\chi_{C}(b,\lambda) = \chi_{C}(b) + \alpha \ln \frac{B_{E}\lambda^{2}}{2} + \text{const}$$

• Thus, the dependence of Φ_{NC}^{λ} on the photon mass can be replaced by some (unknown) constant:

$$\Phi_{\rm NC}^{\lambda} \to \Phi_{\rm NC} \approx \alpha \left[C + \ln \frac{B + B_E}{2B_E} \right] \approx \alpha C$$

• Consequently, the electromagnetic form factor is modified as:

$$B_E^{\rm eff} = \frac{2\langle r_E^2 \rangle}{3} - \frac{\sigma_{\rm tot}}{4\pi} C$$

Absorptive Correction to the Differential Cross Section

• Ignoring the difference between the electromagnetic B_E and hadronic B slopes, the differential cross section is given by:

$$\frac{d\sigma}{dt} = \frac{\sigma_{\text{tot}}^2}{16\pi} \left[\left(\frac{t_c}{t} \right)^2 - 2(\rho + \delta_c - \alpha C) \frac{t_c}{t} + 1 + \rho^2 \right] e^{Bt}$$

• Thus, if absorptive corrections are not accounted for in the experimental data analysis, the measured real-to-imaginary ratio ρ will be biased:

 $\rho^{\text{meas}} = \rho - \alpha C$

- This bias is nearly independent of the center-of-mass energy squared *s*.
- If present, it can be evaluated in a Regge fit analysis of the available proton-proton experimental values of $\rho(s)$ and $\sigma_{tot}(s)$.

Regge Fit of Proton-Proton Measurements

- The accelerator pp data for $p_{Lab} > 5 \text{ GeV}/c$ was taken from the PDG.
- The LHC measurements of *ρ* were not included in the fit

 $\sigma_{\text{tot}}(s)[\mathbf{i} + \rho^{meas}(s) + \boldsymbol{\alpha}\mathbf{C}] = \mathbf{f}_{P}P(s) + \mathbf{f}_{+}R^{+}(s) + \mathbf{f}_{-}R^{-}(s)$ $P(s) \propto \pi \mathbf{f}_{F} \ln \frac{s}{4m_{p}^{2}} + i\left(1 + \mathbf{f}_{F}\ln^{2}\frac{s}{4m_{p}^{2}}\right)$ $R^{\pm}(s) \propto \left(1 \pm e^{-i\pi\boldsymbol{\alpha}_{R^{\pm}}}\right) \left(\frac{s}{4m_{p}^{2}}\right)^{\boldsymbol{\alpha}_{R^{\pm}}-1}$

- In the fit, a non-zero value for the absorptive correction, $\alpha C = -0.036 \pm 0.016$, was found. The confidence level of non-zero correction is equivalent to 2.6 standard deviations.
- While this result cannot be considered conclusive proof, it suggests further attention.

Absorptive Corrections to the Elastic $p^{\uparrow}p$ Analyzing Power $A_N(t)$

$$A_N(t) = \frac{\sqrt{-t}}{m_p} \times \frac{\left[\kappa_p - 2 \operatorname{Im} r_5\right] t_c / t - 2 \operatorname{Re} r_5}{\left(\frac{t_c}{t}\right)^2 - 2(\rho - \alpha C + \delta_c) \frac{t_c}{t} + 1 + \rho^2}$$

p^{meas} (s) 0.2 $\alpha C = -0.036$ $\alpha C = 0$ 0.0 -0.2 STAR A_N HJET A_N -0.410² 10^{3} 10⁴ 10 [GeV] S 80 \times 60 $\operatorname{Im} r_5$ 40 **2**0 20 0 -20 5 -40-60 -15 -5 -100 5 10 Re $r_5 \times 10^3$ • In the $A_N(t)$ measurements, ρ^{fit} from the Regge fit is used instead of $\rho = \alpha C$.

The hadronic spin-flip amplitude,

measured analyzing power $A_N(t)$

can be extracted from the

 $\phi_{\rm sf} = \operatorname{Im} \phi_{\rm nf} \times r_5 \sqrt{-t}/m_p,$

- In the HJET measurements at $\sqrt{s} = 13.76$ and 21.92 GeV, $\rho^{\text{fit}} \approx \rho - \alpha C$, so the absorptive corrections do not alter the measured r_5 .
- However, for STAR at $\sqrt{s} = 200$ GeV, applying absorptive correction $\alpha C = -0.036$ results in $\Delta \rho^{\text{fit}} = 0.034$, leading to a biased measurement of r_5 .

1- σ contours (stat+syst)

- 1. HJET, $\sqrt{s} = 13.76 \text{ GeV}$
- 2. HJET, $\sqrt{s} = 21.92 \text{ GeV}$

7.

- 3. Extrapolation (Froissaron) to 200 GeV
- 4. Extrapolation (simple pole) to 200 GeV
- 5. STAR, $\sqrt{s} = 200$ GeV (as published)
- 6. STAR, + the $B_E B$ and **spin-flip** absorptive corrections
 - STAR, + non-flip absorptive correction $\alpha C = -0.036$

For the combine fit (Regge+ A_N), confidence of the bias in value of ρ is equivalent to 3.2 standard deviations.

Diffraction and Low-x 2024.09.10

Modified Calculation of the Absorptive Correction

To eliminate the dependence on photon mass in calculating the absorptive correction, a modified approach (though not yet proven or justified) can be considered:

If the electromagnetic phase is set to zero, $\Phi_C^{\lambda}(t) \equiv 0$, then the absorption can be incorporated by introducing an absorptive factor $1 - \gamma_N(b)$ in the impact parameter space.

In this scenario: $\Phi_{\rm NC}^{\lambda} \rightarrow -\delta_{\rm C}(t)$, $\alpha C \rightarrow -\delta_{\rm C}(t)$, and $\frac{d\sigma}{dt} = \frac{\sigma_{\rm tot}^2}{16\pi} \left[\left(\frac{t_c}{t} \right)^2 - 2(\rho + 2\delta_{\rm C}) \frac{t_c}{t} + 1 + \rho^2 \right] e^{Bt}$

The average value of the absorptive correction, $\langle -\delta_C(t) \rangle \approx -0.021$, agrees with the $\alpha C = -0.036 \pm 0.016$.

To estimate potential effect of the logarithmic term $\alpha \ln(t_c/t)$ in the absorptive correction on the measurement of ρ , a fit of the TOTEM measurement of $d\sigma/dt$ was performed. $\Delta\chi^2$ represents the chi-square difference between fits with and without the absorptive correction, depending on the *t*-range. The hadronic slope *B* does not depend on *t*.

The assumption that the absorptive correction can be approximated by the Coulomb phase $-\delta_C(t)$ is consistent with the experimental measurements considered.

Hadronic Slope Parametrization B(t)

• Significant improvement of $\Delta \chi^2$ for large $|t|_{\text{max}}$ suggests considering the following parametrization of the slope

$\boldsymbol{B}(\boldsymbol{t}) = \boldsymbol{\beta}_0 \times [1 + \boldsymbol{\beta}' \ln(t_c/t)]$

- For the TOTEM measurement, this parametrization could exhaustively improve consistency with the measured $d\sigma/dt$ beyond the CNI region, as well as increase the value of ρ to align with the predictions from the Regge fit (before applying absorptive corrections).
- However, when absorptive correction are applied, the discrepancy between the two values of ρ comes back.
- The numerical value of $\beta' \approx 2.8\alpha$ suggests it might be due to a possible radiative corrections to the slope *B*.
- If this is the case, theoretically calculating the $\ln(t_c/t)$ corrections to the hadronic slope B(t) could be critically important for experimental study of forward elastic proton-proton scattering.

Absorptive corrections were not considered in the results presented in the Table.		$ t _{\rm max}=0.07~{\rm GeV^2}$			$ t _{ m max} = 0.15 \ m GeV^2$		
	B(t)	χ^2/ndf	ρ	$\sigma_{ m tot} [m mb]$	χ^2/ndf	ρ	$\sigma_{ m tot} [m mb]$
	TOTEM Collaboration, Eur. Phys. J. C 79, 785 (2019)						
	β _o	0.9	0.09 ± 0.01	111.8 <u>+</u> 3.1	2.1	-	-
	$\beta_0 + \beta_1 t$	0.9	0.10 ± 0.01	111.9 <u>+</u> 3.1	1.0	0.09 ± 0.01	111.9 <u>+</u> 3.1
	$\beta_0+\beta_1t+\beta_2t^2$	0.9	0.09 ± 0.01	111.9 <u>+</u> 3.0	0.9	0.10 ± 0.01	112.1 ± 3.1
	This work						
	βο	67.2/76	0.090 ± 0.007	111.0 ± 2.4	236.9/115	0.070 ± 0.007	107.8 ± 2.3
	$\beta_0 \left(1 + 0.021 \ln \frac{t_c}{t}\right)$	67.6/76	0.124 ± 0.007	107.6 <u>+</u> 2.2	105.9/115	0.119 ± 0.006	108.3 ± 2.2

Absorptive corrections in elastic pp scattering

Summary

- It has been demonstrated that alterations in the proton **non-flip** electromagnetic form factor due to absorptive corrections can introduce an effective bias in the measurement of the real-to-imaginary ratio *ρ*. This bias appears to be nearly independent of the center-of-mass energy *s*.
- The magnitude of this bias may be significant, comparable to the correction introduced by the Coulomb phase δ_c .
- However, the current methodology for evaluating absorptive corrections may need to be adjusted.
- The **non-flip** absorptive corrections do not alter the hadronic spin flip amplitude parameter r_5 determined at HJET but is for interpreting the $A_N(t)$ measured at STAR.
- Irrespective of the assumptions regarding absorptive corrections, it is important to note:
 - The assumption that all prior experimental determinations of ρ are systematically biased improves the Regge fit for elastic *pp* measurements of $\rho(s)$ and $\sigma_{tot}(s)$.
 - However, this refit may increase the observed discrepancy in TOTEM between the measured value of p and the expected value from the fit.
 - In a combined analysis that includes the Regge fit and a comparison of HJET and STAR values of *r*₅, a bias in the value of *p* corresponds to a confidence level equivalent to 3.2 standard deviations.
 - Assumption that $B(t) = \beta_0 [1 + \beta' \ln(t_c/t)]$ is well consistent with the TOTEM measurements of $d\sigma/dt$ and also eliminates the discrepancy between the measured and expected values of ρ .
 - If confirmed such a parametrization may require revisiting all previous measurements of ρ .

Backup

Elimination of the photon mass dependence

- It can be straightforwardly shown that adding a constant term to eikonal phase $\chi_C(b) \rightarrow \chi_C(b) + \chi_0$ results in corresponding alteration of the both Coulomb phases: $\Phi_C^{\lambda} \rightarrow \Phi_C^{\lambda} + \chi_0$ and $\Phi_{NC}^{\lambda} \rightarrow \Phi_{NC}^{\lambda} + \chi_0$.
- Introducing of the photon mass λ effectively suppress Coulomb amplitude $\chi_C(b) \rightarrow 0$ for large $b > 1/\lambda$.
- Technically, to achieve this adjustment, a λ -dependent constant χ_0^{λ} is added to $\chi_c(b)$:

• Thus, the dependence of Φ_{NC}^{λ} on the photon mass can be eliminated in a straightforward manner:

$$\Phi_{\rm NC}^{\lambda} \to \Phi_{\rm NC} = \Phi_{\rm NC}^{\lambda} + \alpha e^{-B_E \lambda^2/2} E_1(B_E \lambda^2/2)$$

• However, in doing so, $\Phi_{\rm NC}$ is defined up to some photon mass-independent constant C:

$$\Phi_{\rm NC} \approx \alpha \left[C + \ln \frac{B + B_E}{2B_E} \right] \approx \alpha C$$

 $B_E^{\rm eff} = \frac{2\langle r_E^2 \rangle}{3} - \frac{\sigma_{\rm tot}}{4\pi} C$

Diffraction and Low-x 2024.09.10

Absorptive Corrections to the Elastic p^{\uparrow} Au Analyzing Power $A_N(t)$

- Values of r_5^{pAl} and r_5^{pAu} disagrees with $r_5^{pp} = -0.0125 i \ 0.0053$ (HJET, 100 GeV) if $r_5^{pA} = \frac{i + \rho^{pA}}{i + \rho^{pp}} r_5^{pp}$ [B.Z. Kopeliovich and T.L Trueman, Phys. Rev. D 64, 03404 (2001)]
- Probably, adjustment of the absorptive correction may improve the data fit.