

Diffractive results from CMS

István Szanyi on behalf of the CMS and TOTEM Collaborations

University of Kansas, Lawrence, USA MATE Institute of Technology, KRC, Gyöngyös, Hungary HUN-REN Wigner RCP, Budapest, Hungary

> Diffraction and Low-x 2024 8 – 14 September 2024, Palermo, Italy

Outline

- basic diffractive scattering events in pp collisions
- the CMS and TOTEM detectors at LHC
- nonresonant central exclusive production of charged-hadron pairs in pp collisions at \sqrt{s} = 13 TeV Phys. Rev. D 109 (2024) 112013
- dijet events with hard color-singlet exchange (jet-gap-jet events) in pp collisions at \sqrt{s} = 13 TeV Phys. Rev. D **104** (2021) 032009
- single-diffractive dijet production in pp collisions at \sqrt{s} = 8 TeV Eur. Phys. J. C 80 (2020) 1164
- summary

elastic

0

η

dominant **pomeron exchange** leading to a **large rapidity gap** (LRG), a wide region devoid of particle activity

"soft" pomeron in Regge theory: whole family of particles with vacuum quantum numbers; it accounts for the rising hadronic cross sections with \sqrt{s}

dominant **pomeron exchange** leading to a **large rapidity gap** (LRG), a wide region devoid of particle activity

"soft" pomeron in Regge theory: whole family of particles with vacuum quantum numbers; it accounts for the rising hadronic cross sections with \sqrt{s}

"hard" (BFKL) pomeron in pQCD: colorless compound of two interacting gluons

dominant **pomeron exchange** leading to a **large rapidity gap** (LRG), a wide region devoid of particle activity

"soft" pomeron in Regge theory: whole family of particles with vacuum quantum numbers; it accounts for the rising hadronic cross sections with \sqrt{s}

"hard" (BFKL) pomeron in pQCD: colorless compound of two interacting gluons

dominant **pomeron exchange** leading to a **large rapidity gap** (LRG), a wide region devoid of particle activity

"soft" pomeron in Regge theory: whole family of particles with vacuum quantum numbers; it accounts for the rising hadronic cross sections with \sqrt{s}

"hard" (BFKL) pomeron in pQCD: colorless compound of two interacting gluons

pomeron physics is an ongoing research topic both experimentally and theoretically

BFKL pomeron

CMS central detector

TOTEM RP detectors are located about 200-220 m away from IP5 on **both sides** of CMS

diffractively produced particles are measured by CMS detector; intact protons are measured by TOTEM RP detectors

TOTEM RP detectors are located about 200-220 m away from IP5 on **both sides** of CMS

diffractively produced particles are measured by CMS detector; intact protons are measured by TOTEM RP detectors

RPs (equipped with 10 planes of Si strip sensors) approach the beam horizontally or vertically

resonant component (Born-level)

resonant component (Born-level)

resonant component (Born-level)

nonresonant continuum component (Born-level)

Central exclusive production (CEP) of charged pion pairs

Central exclusive production (CEP) of charged pion pairs

nonresonant continuum production of charged pion pairs is studied by CMS and TOTEM experiments

in pp collisions at \sqrt{s} = 13 TeV in a special run (β^* = 90m, L_{int} = 4.7 pb⁻¹), in the resonance-free region: $m_{\pi^+\pi^-} < 0.7$ GeV, $m_{\pi^+\pi^-} > 1.8$ GeV (scattered proton p_T : 0.2 GeV < ($p_{1,T}$, $p_{2,T}$) < 0.8 GeV; pion rapidities: |y| < 2)

Central exclusive production (CEP) of charged pion pairs

nonresonant continuum production of charged pion pairs is studied by CMS and TOTEM experiments

in pp collisions at \sqrt{s} = 13 TeV in a special run (β^* = 90m, L_{int} = 4.7 pb⁻¹), in the resonance-free region: $m_{\pi^+\pi^-} < 0.7$ GeV, $m_{\pi^+\pi^-} > 1.8$ GeV (scattered proton p_T : 0.2 GeV < ($p_{1,T}$, $p_{2,T}$) < 0.8 GeV; pion rapidities: |y| < 2)

Phys. Rev. D 109 (2024) 112013

very clean pp → pππp events:
 2 pions measured in CMS
and 2 protons measured in TOTEM

very clean pp → pππp events:
 2 pions measured in CMS
and 2 protons measured in TOTEM

main background: elastic and inelastic pileup

very clean pp → pππp events:
 2 pions measured in CMS
and 2 protons measured in TOTEM

main background: elastic and inelastic pileup

background removal is based on momentum conservation in the transverse plane

very clean pp → pππp events:
 2 pions measured in CMS
and 2 protons measured in TOTEM

main background: elastic and inelastic pileup

background removal is based on momentum conservation in the transverse plane

the sum of $p_{Tx,y}$ of the two protons

$$\sum_{2} p_{x,y}$$

very clean pp → pππp events:
 2 pions measured in CMS
and 2 protons measured in TOTEM

main background: elastic and inelastic pileup

background removal is based on momentum conservation in the transverse plane

the sum of $p_{Tx,y}$ of the two protons

VS.

very clean pp → pππp events:
 2 pions measured in CMS
and 2 protons measured in TOTEM

main background: elastic and inelastic pileup

background removal is based on momentum conservation in the transverse plane

VS.

the sum of $p_{Tx,y}$ of the two protons

the sum of $p_{Tx,y}$ of the two protons and the two pions

very clean pp → pππp events:
 2 pions measured in CMS
and 2 protons measured in TOTEM

main background: elastic and inelastic pileup

background removal is based on momentum conservation in the transverse plane

VS.

the sum of $p_{Tx,y}$ of the two protons

the sum of $p_{Tx,y}$ of the two protons and the two pions

CMS-TOTEM **very clean** pp → pππp **events**: TΒ 2 pions measured in CMS ¹Σ₄p_x [GeV] 0 2.0 -Σ4p_y [GeV] 0.2 2.0 and 2 protons measured in TOTEM main background: elastic and inelastic pileup a.u. background removal is based on 0.5 -0.5 momentum conservation in the $\Sigma_2 p_x [GeV]$ transverse plane BT ⁻¹Σ₄p_x [GeV] 0 2.0 the sum of $p_{Tx,v}$ of the sum of $p_{Tx,y}$ of the two the two protons protons and the two pions VS.

-0.5

p_{x,y}

for exclusive events:
$$\sum_4 p_{x,y} \sim 0$$

very clean pp → pππp events: 2 pions measured in CMS and 2 protons measured in TOTEM

main background: elastic and inelastic pileup

background removal is based on momentum conservation in the transverse plane

the sum of $p_{Tx,y}$ of the two protons

the sum of $p_{Tx,y}$ of the two protons and the two pions

for exclusive events:
$$\sum_4 p_{x,y} \sim 0$$

VS.

CMS-TOTEM pb TeV ТΒ ⁻¹Σ₄p_x [GeV] 0.5 ο GeV] CE with TT and BB trigger configs a.u. elastic events cannot be detected (no vertical bands) 0.5 -0.5 0.5 -0.50 $\Sigma_2 p_x [GeV]$ $\Sigma_2 p_v [GeV]$ BB B ⁻¹Σ₄p_x [GeV] 2.0 0.5 ^LΣ4p_x [GeV] 0.5 .5 -0.5 $\Sigma_2 p_y [GeV]$ $\Sigma_2 p_{y} [GeV]$ 6/16

very clean pp → pππp events:
 2 pions measured in CMS
and 2 protons measured in TOTEM

main background: elastic and inelastic pileup

background removal is based on momentum conservation in the transverse plane

the sum of $p_{Tx,y}$ of the two protons

the sum of $p_{Tx,y}$ of the two protons and the two pions

for exclusive events:
$$\sum_4 p_{x,y} \sim 0$$

VS.

studied variables:

studied variables:

triple differential cross sections:

in ranges of $p_{1,T}$ and $p_{2,T}$, distributions of $\varphi,$ m, and max(t, u)

 $\begin{array}{l} \mbox{triple differential cross sections:} \\ \mbox{in ranges of $p_{1,T}$ and $p_{2,T}$, distributions of φ,} \\ \mbox{m, and max}(t,u) \end{array}$

 $\begin{array}{l} \mbox{triple differential cross sections:} \\ \mbox{in ranges of $p_{1,T}$ and $p_{2,T}$, distributions of φ,} \\ \mbox{m, and max}(t,u) \end{array}$

models after tuning give better descriptions but still need for further theoretical developments

studied variables: p_{1,T} and p_{2,T}, the transverse momenta of final state protons; φ, the azimuthal angle between the scattered protons; m, the invariant mass of the pion pair; max(t, u) squared four momentum of the virtual meson

 $\begin{array}{l} \mbox{triple differential cross sections:} \\ \mbox{in ranges of $p_{1,T}$ and $p_{2,T}$, distributions of φ,} \\ \mbox{m, and max}(t,u) \end{array}$

a parabolic minimum in the distribution of φ is observed for the first time

models after tuning give better descriptions but still need for further theoretical developments

studied variables: p_{1,T} and p_{2,T}, the transverse momenta of final state protons; φ, the azimuthal angle between the scattered protons; m, the invariant mass of the pion pair; max(t, u) squared four momentum of the virtual meson

triple differential cross sections: in ranges of $p_{1,T}$ and $p_{2,T}$, distributions of ϕ , m, and max(t, u)

a parabolic minimum in the distribution of φ is observed for the first time

the minimum can be interpreted as an effect due to rescattering (absorption) corrections

> Harland-Lang, Khoze, Ryskin, Eur. Phys. J. C 74 (2014) 2848

models after tuning give better descriptions but still need for further theoretical developments

7/16

$d^3\sigma/dp_{1,T} dp_{2,T} dm$ and $d^3\sigma/dp_{1,T} dp_{2,T} dmax(t, u)$

$d^3\sigma/dp_{1,T} dp_{2,T} dm$ and $d^3\sigma/dp_{1,T} dp_{2,T} dmax(t, u)$

based on the measured distributions, models are tuned and various physical parameters related to pomeron physics are determined

jet-gap-jet event by hard color-singlet exchange

devoid of particle activity between the final-state jets due to **BFKL pomeron exchange**

jet-gap-jet event by hard color-singlet exchange

jet-gap-jet event by hard color-singlet exchange

activity between the final-state jets due to **BFKL** pomeron exchange tool to study BFKL

devoid of particle activity between the final-state jets due to **BFKL pomeron exchange**

tool to study BFKL dynamics

jet-gap-jet event by hard color-singlet exchange

jet-gap-jet event by hard color-singlet exchange

dynamics

jet-gap-jet with intact proton event by hard color-singlet exchange

jet-gap-jet event by hard color-singlet exchange

tool to study BFKL dynamics

jet-gap-jet with intact proton event by hard color-singlet exchange

9/16

CMS color-singlet exchange (CSE) dijet event fractions
the fraction of color-singlet exchange dijet events, f_{CSE} , is measured in bins of $\Delta\eta_{jj} = |\eta^{jet1} - \eta^{jet2}|$, p_T^{jet2} (subleading jet p_T) and $\Delta\varphi_{jj} = |\varphi^{jet1} - \varphi^{jet2}|$

the fraction of color-singlet exchange dijet events, f_{CSE} , is measured in bins of $\Delta\eta_{jj} = |\eta^{jet1} - \eta^{jet2}|$, p_T^{jet2} (subleading jet p_T) and $\Delta\varphi_{jj} = |\varphi^{jet1} - \varphi^{jet2}|$

the fraction of color-singlet exchange dijet events, f_{CSE} , is measured in bins of $\Delta \eta_{ij} = |\eta^{jet1} - \eta^{jet2}|$, p_T^{jet2} (subleading jet p_T) and $\Delta \varphi_{ij} = |\varphi^{jet1} - \varphi^{jet2}|$

the fraction of color-singlet exchange dijet events, f_{CSE} , is measured in bins of $\Delta \eta_{ij} = |\eta^{jet1} - \eta^{jet2}|$, p_T^{jet2} (subleading jet p_T) and $\Delta \varphi_{ij} = |\varphi^{jet1} - \varphi^{jet2}|$

the fraction of color-singlet exchange dijet events, f_{CSE} , is measured in bins of $\Delta \eta_{jj} = |\eta^{jet1} - \eta^{jet2}|$, p_T^{jet2} (subleading jet p_T) and $\Delta \varphi_{jj} = |\varphi^{jet1} - \varphi^{jet2}|$

results are compared with BFKL-based calculations by Royon, Marquet, Kepka (RMK) and Ekstedt, Enberg, Ingelman, Motyka (EEIM) in NLL accuracy implemented in PYTHIA (the latter includes soft color interaction (SCI) and/or multi-parton interaction (MPI) contributions)

Baldenegro, González Durán, Klasen, Royon, Salomon, JHEP 2022, 250

Baldenegro, González Durán, Klasen, Royon, Salomon, JHEP 2022, 250

Baldenegro, González Durán, Klasen, Royon, Salomon, JHEP 2022, 250

good agreement between BFKL and data but the gap definition is different in theory and data (theory: no particles at all; experiment: no particles with p_T>200 MeV; explanation: too much ISR generated by PYTHIA)

Baldenegro, González Durán, Klasen, Royon, Salomon, JHEP 2022, 250

good agreement between BFKL and data but the gap definition is different in theory and data (theory: no particles at all; experiment: no particles with p_T>200 MeV; explanation: too much ISR generated by PYTHIA) Colferai, Deganutti, Raben, Royon, JHEP 2023, 91

good agreement between BFKL and data but the gap definition is different in theory and data (theory: no particles at all; experiment: no particles with p_T>200 MeV; explanation: too much ISR generated by PYTHIA)

good agreement between BFKL and data but the gap definition is different in theory and data (theory: no particles at all; experiment: no particles with p_T>200 MeV; explanation: too much ISR generated by PYTHIA)

the full BFKL NLL prediction for the jet-gap-jet cross section is below the BFKL LL estimate in the whole rapidity separation range (15-20% decrease)

dominant background: uncorrelated forward protons from pile up or beam halo activity

dominant background: uncorrelated forward protons from pile up or beam halo activity

background removal based on matching between the fractional momentum losses ξ_p^{TOTEM} and ξ_p^{CMS}

dominant background: uncorrelated forward protons from pile up or beam halo activity

background removal based on matching between the fractional momentum losses $\,\xi_p^{TOTEM}$ and $\,\xi_p^{CMS}$

 $\label{eq:constraint} \begin{array}{l} \mbox{ideally } \xi_p^{TOTEM} = \xi_p^{CMS}, \mbox{ but CMS detector underestimates } \xi_p, \\ \mbox{ hence } \xi_p^{CMS} - \xi_p^{TOTEM} < 0 \mbox{ is required} \end{array}$

dominant background: uncorrelated forward protons from pile up or beam halo activity

background removal based on matching between the fractional momentum losses $\,\xi_p^{TOTEM}$ and $\,\xi_p^{CMS}$

limited sample size, a measurement as a function of kinematic variables is not possible: the f_{CSE} is extracted using the entire sample of events

dominant background: uncorrelated forward protons from pile up or beam halo activity

background removal based on matching between the fractional momentum losses $\,\xi_p^{TOTEM}$ and $\,\xi_p^{CMS}$

limited sample size, a measurement as a function of kinematic variables is not possible: the f_{CSE} is extracted using the entire sample of events

dominant background: uncorrelated forward protons from pile up or beam halo activity

background removal based on matching between the fractional momentum losses ξ_p^{TOTEM} and ξ_p^{CMS}

limited sample size, a measurement as a function of kinematic variables is not possible: the f_{CSE} is extracted using the entire sample of events

Schematic diagram of single-diffractive dijet production with hard $gg \rightarrow dijet$ scatteing process; the qq and gq initial states also contribute

high- p_{T} jets are measured in CMS, the scattered proton is measured in the TOTEM detectors

Schematic diagram of single-diffractive dijet production with hard $gg \rightarrow dijet$ scatteing process; the qq and gq initial states also contribute

Schematic diagram of single-diffractive dijet production with hard $gg \rightarrow dijet$ scatteing process; the qq and gq initial states also contribute high- p_{T} jets are measured in CMS, the scattered proton is measured in the TOTEM detectors

data collected at \sqrt{s} = 8 TeV in a dedicated run (β^* = 90m, L_{int} = 37.5 nb⁻¹)

Schematic diagram of single-diffractive dijet production with hard $gg \rightarrow dijet$ scatteing process; the qq and gq initial states also contribute high- p_T jets are measured in CMS, the scattered proton is measured in the TOTEM detectors

data collected at \sqrt{s} = 8 TeV in a dedicated run (β^* = 90m, L_{int} = 37.5 nb⁻¹)

matching between ξ_p^{TOTEM} and ξ_p^{CMS} to suppress pileup and beam halo events: $\xi_p^{CMS} - \xi_p^{TOTEM} \le 0$

Schematic diagram of single-diffractive dijet production with hard $gg \rightarrow dijet$ scatteing process; the qq and gq initial states also contribute

high- p_T jets are measured in CMS, the scattered proton is measured in the TOTEM detectors

data collected at \sqrt{s} = 8 TeV in a dedicated run (β^* = 90m, L_{int} = 37.5 nb⁻¹)

matching between ξ_p^{TOTEM} and ξ_p^{CMS} to suppress pileup and beam halo events: $\xi_p^{CMS} - \xi_p^{TOTEM} \le 0$

this is the first measurement of hard diffraction with a measured intact proton at LHC

Schematic diagram of single-diffractive dijet production with hard $gg \rightarrow dijet$ scatteing process; the qq and gq initial states also contribute

Eur. Phys. J. C 80 (2020) 1164

high- $p_{\rm T}$ jets are measured in CMS, the scattered proton is measured in the TOTEM detectors

data collected at \sqrt{s} = 8 TeV in a dedicated run (β^* = 90m, L_{int} = 37.5 nb⁻¹)

matching between ξ_p^{TOTEM} and ξ_p^{CMS} to suppress pileup and beam halo events: $\xi_p^{CMS} - \xi_p^{TOTEM} \le 0$

this is the first measurement of hard diffraction with a measured intact proton at LHC

Schematic diagram of single-diffractive dijet production with hard $gg \rightarrow dijet$ scatteing process; the qq and gq initial states also contribute

Eur. Phys. J. C 80 (2020) 1164

high- p_{T} jets are measured in CMS, the scattered proton is measured in the TOTEM detectors

data collected at \sqrt{s} = 8 TeV in a dedicated run (β^* = 90m, L_{int} = 37.5 nb⁻¹)

matching between ξ_p^{TOTEM} and ξ_p^{CMS} to suppress pileup and beam halo events: $\xi_p^{CMS}-\xi_p^{TOTEM}\leq 0$

this is the first measurement of hard diffraction with a measured intact proton at LHC

hard diffractive processes are described in terms of a convolution of diffractive parton distribution functions (dPDFs, measured at HERA) and hard scattering cross sections (calculated in pQCD)

POMWIG (with $\langle S^2 \rangle$ = 7.4%) and PYTHIA8 DG MC predictions show good agreement with the data

POMWIG (with $\langle S^2 \rangle$ = 7.4%) and PYTHIA8 DG MC predictions show good agreement with the data

the t distribution up to about 0.4 GeV² is well described by an exponential function
SD dijet results

POMWIG (with $\langle S^2 \rangle$ = 7.4%) and PYTHIA8 DG MC predictions show good agreement with the data

the t distribution up to about 0.4 GeV² is well described by an exponential function

as compared to the Tevatron CDF results, SD dijet production is further suppressed at the LHC

- various diffractive processes measured jointly by CMS and TOTEM in pp collisions
- first time observation of a parabolic minimum in the distribution of the azimuthal angle difference of the final state protons in central exclusive production;
- various physical parameters related to pomeron physics extracted/tuned
- good agreement between BFKL and jet-gap-jet measurements
- first measurement of hard diffraction with a measured intact proton at LHC

Thank you for your attention!

Supported by the NKFIH grants K147557 and 2020-2.2.1-ED-2021-00181; and by the Research Excellence Programme and the Flagship Research Groups Programme of the Hungarian University of Agriculture and Life Sciences.