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detector; intact protons are measured by TOTEM RP detectors

CMS
central detector

TOTEM 
Roman Pot (RP) detectors

RPs (equipped with 10 planes of Si strip sensors) approach the
beam horizontally or vertically

silicon strip tracking 
detector planes

acceptance down to near zero in fractional momentum loss (𝜉) 
and squared transferred 4-momentum (𝑡)

TOTEM RP detectors are located about 200-220 m away from 
IP5 on both sides of CMS
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resonant component (Born-level) nonresonant continuum component (Born-level)

nonresonant continuum production of charged pion pairs
is studied by CMS and TOTEM experiments

in pp collisions at 𝑠 = 13 TeV in a special run (β∗ = 90m, Lint = 4.7 pb-1),
in the resonance-free region: mπ+π− < 0.7 GeV, mπ+π− > 1.8 GeV

(scattered proton pT:  0.2 GeV < (p1,T, p2,T) < 0.8 GeV; pion rapidities: |𝑦| < 2)

Phys. Rev. D 109 (2024) 112013

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.109.112013
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the minimum can be interpreted as an effect
due to rescattering (absorption) corrections

studied variables:
p1,T and p2,T, the transverse momenta of 

final state protons;
ϕ, the azimuthal angle between the

scattered protons;
m, the invariant mass of the pion pair;

max(t, u) squared four momentum of the
virtual meson

a parabolic minimum in the distribution of 
ϕ is observed for the first time

triple differential cross sections: 
in ranges of p1,T and p2,T , distributions of ϕ, 

m, and max(t, u)

Harland-Lang, Khoze, Ryskin, Eur. 
Phys. J. C 74 (2014) 2848

models after tuning give better descriptions but
still need for further theoretical developments
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based on the measured distributions, models are tuned and various 
physical parameters related to pomeron physics are determined
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the fraction of color-singlet exchange dijet events, fCSE, is measured in bins of  
Δηjj = |ηjet1 − ηjet2|, pT

jet2 (subleading jet pT) and Δϕjj = |ϕjet1 − ϕjet2|

results are compared with BFKL-based calculations by Royon, Marquet, Kepka (RMK)
and Ekstedt, Enberg, Ingelman, Motyka (EEIM) in NLL accuracy implemented in PYTHIA

(the latter includes soft color interaction (SCI) and/or multi-parton interaction (MPI) contributions)

in EEIM Δϕjj ≈ π
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the full BFKL NLL prediction for the jet-gap-jet
cross section is below the BFKL LL estimate in the 

whole rapidity separation range (15-20% decrease)

good agreement between BFKL and data but the 
gap definition is different in theory and data

(theory: no particles at all; experiment: no particles 
with pT>200 MeV; explanation: too much ISR 

generated by PYTHIA)
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Royon, Salomon, JHEP 2022, 250

Colferai, Deganutti, Raben, 
Royon, JHEP 2023, 91
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Schematic diagram of single-diffractive dijet 

production with hard gg → dijet scatteing process; 

the qq and gq initial states also contribute

data collected at s = 8 TeV in a dedicated run 
(β∗ = 90m, Lint = 37.5 nb-1)

this is the first measurement of hard diffraction
with a measured intact proton at LHC

high-pT jets are measured in CMS, the scattered
proton is measured in the TOTEM detectors

matching between ξp
TOTEM and ξp

CMS to suppress
pileup and beam halo events: ξp

CMS − ξp
TOTEM ≤ 0

hard diffractive processes are described in terms 
of a convolution of diffractive parton distribution 
functions (dPDFs, measured at HERA) and hard 
scattering cross sections (calculated in pQCD)

Eur. Phys. J. C 80 (2020) 1164

https://link.springer.com/article/10.1140/epjc/s10052-020-08562-y
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the t distribution up to about 0.4 GeV2 is well described by an exponential function

POMWIG (with S2 = 7.4%)  and PYTHIA8 DG MC predictions show good agreement with the data

as compared to the Tevatron CDF results, SD dijet production is further suppressed at the LHC
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▪ various diffractive processes measured jointly by CMS and TOTEM in pp collisions

▪ first time observation of a parabolic minimum in the distribution of the azimuthal 
angle difference of the final state protons in central exclusive production; 

▪ various physical parameters related to pomeron physics extracted/tuned 

▪ good agreement between BFKL and jet-gap-jet measurements

▪ first measurement of hard diffraction with a measured intact proton at LHC
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