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Hadronic cross sections
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* Contribution of Regge trajectories to

the total cross section is:

1
S

a(0)—1

* The explanation for rising hadronic cross
sections in terms of Regge theory is a new

trajectory with intercept greater

than unity.
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* This trajectory was named the pomeron
after the Ukrainian Soviet physicist Isaak

Pomeranchuk.
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Inelastic and diffractive events \“z;-':/
Ginel = 0-SD + O-DD + O-CD + o-Non-Diff
4 Single Double
diffractive (SD) diffractive (DD) ,
diffracted
' I mass (My)
, , Rapidity gap
Diffractive _ diffracted
@ events, < ' mass (Mx)
exchange of
pomerons Central diffractive (CD)
G
© Non-diffractive events (ND).
No gap, no pomeron exchange
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Diffraction in Run | &
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Diffraction in Run |: MC adjustment
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“The ALICE inelastic
cross section result at B
Vs =7 TeV is consistent 20—
with those from ATLAS, -
CMS, and TOTEM”
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Diffraction in run Il

* At the end of Run I the ALICE Diffractive detector (AD) was
installed and commissioned, with the aim of increasing the
pseudorapidity coverage and the sensitivity of ALICE to low
mass diffractive systems.

 Two stations, ADA and ADC, located at z=-19.6 and z=17.0
meters respectively from the interaction point (IP).
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ALICE detectors in run Il
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ALICE detectors in run Il (A-side) &
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ALICE detectors in run Il (C-side) B
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ADA and ADC extend the pseudorapidity coverage of ALICE. %

| ~ FMD-C FMD-A |

: | | SPD - |

: § - VZERO-C VZERO-A |

| dL A, dR I

_—'7.0 —;1.9 —%7 —‘2| 0 | z 28 418I 6j3 N
‘ —3.4 1.7 1.7 5.1 ‘
Without AD
With AD

2024-Sep E. Calvo Diffraction and Low-Xx 12



SILBe
Z

Diffractive mass and pseudorapidity oA
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AD improves trigger efficiency for diffractive events at .
low diffracted masses.
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Event categories £ pucp

There are 3 event categories:
1-arm-L - SD-L (left or n<o)

1-arm-R - SD-R (right or n>0)
2-arm - ND and DD events

DD: 2-Arm and An>3

FMD—L J‘l FMD—-R
Largest SPD
pseudorapidity | VO—L ™ _|V0_R I
9 £
.......................... |
l .............. T
| 4 AN L
== R
37 1 0 1 Ny 5.1

2024-Sep E. Calvo Diffraction and Low-X 15



\$ﬂN[54,«(

ZT[,,*

®

11N

Method

SDL SDR
Janml L Ayt ospr
a0 Cagp R el osbn
02-arm €oarm  €2-arm ONSD
N\ N
s Y 2’2
observable detector and trigger physical cross
cross sections efficiency sections
The visible cross sections of the garm.1., Carm-r and NSD _ (foDeRD 1+ fepegm 1, + fnpehm 1)
O9-arm €vent classes are a linear combination of the arm-L ™ fob + fep + fNp
Shysmaal crossgsectu;ns a::dtge trigger efficiencies: Nsp (fopeP2 5 + fepell 1 + fapedl 1)
SDL: OSDR, ODD, OCD ND .- arm-R —
+ fcp +
The terms eX°D. | NSDand €)5D depend on the 5D fop fc% Jxp .
DD content. 62NSD _ (fDD€2—arm + fCD€2—arm + fNDEQ—arm)
o Jop + fep + /ND
2024-Sep

E. Calvo Diffraction and Low-X 16



Simulation of single diffraction

* Before we proceed, we need to improve
the description of single diffraction in
the MC generators. The main
uncertainty in the simulation of
diffraction is the shape of the single
diffractive mass distribution.

* In similar way as the 2012 ALICE paper®,
the Kaidalov-Poghosyan (KP) model is
used. Weights are applied to the
generated SD events.

* Two linear variations of this model are
also used in order to account for
theoretical uncertainty.

« If M,>200 GeV/c* - event is relabeled as

non-diffractive.

(@) Eur.Phys.J. C73 (2013) no.6, 2456
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Diffractive mass distributions (13 TeV)
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Extracting the DD content (without AD)

Here, events have been selected by the > 1 5 =7TeV
2-arm condition (mostly non-diffractive 5 - - )
T : G 101l ALICE: Eur.Phys.J. C73
and double-diffractive). '8 10 . (2013) n0.6, 2456
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event is plotted for data and MC. @ data i
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Extracting relative cross sections
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* We iterate until we reach final values.

e At this stage we have extracted the
relative content of DD and SD in MC.

* The main uncertainty in DD comes
from the difference between Pythia6
and Phojet. In SD, the uncertainty
comes from the variations of KP
model used to account for the
theoretical uncertainty in the shape of
M, distribution.

* Work to get final values is ongoing.
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Summary and outlook D&

Inelastic and diffractive cross sections were measured by ALICE in run Iin p-p
collisions at 7 TeV, with results consistent with other experiments.

At 13 TeV, one of the main uncertainties is the low efficiency of detecting single
diffractive events at low diffracted masses.

Forward detectors like ADA and ADC, increase pseudorapidity coverage and reduce
uncertainty in measurement of relative cross sections. Study of inelastic and
diffractive cross sections at 13 TeV is progressing (run II).

During the ongoing run III ALICE has already surpassed the amount of p-p data
collected during run II. The AD detectors, now rebranded as FDD and continue to
take data as part of the FIT detector, which poses interesting possibilities for future
diffractive studies.
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