Dipole approach to exclusive J/ψ photoproduction and the putative gluon shadowing

Wolfgang Schäfer

Institute of Nuclear Physics Polish Academy of Sciences

Diffraction and Low-x, Sep 8 - 14, 2024 Hotel Tonnara Trabia, Palermo, Sicily

Narodowe Centrum Nauki

- The color dipole approach to coherent photoproduction on the nucleus, is a variant of Glauber-Gribov multiple scattering theory. It sums up multiple scatterings of a color-dipole within the nucleus, as on a typical diagram:

- We test a number of dipole cross sections fitted to inclusive F₂-data against the total cross section of exclusive J/ψ-production on the free nucleon and calculate the diffractive amplitude on the nuclear target.
- We compare our results to recent data on exclusive J/ψ production in ultraperipheral lead-lead collisions at $\sqrt{s_{NN}} = 2.76 \text{ TeV}$ and $\sqrt{s_{NN}} = 5.02 \text{ TeV}$.

Diffractive photoproduction in the dipole approach

• In the dipole approach the imaginary part of the diffractive production amplitude in the forward direction **q** = 0 takes the form (Nikolaev, Kopeliovich, Zakharov):

$$\Im m \mathcal{A}(\gamma A \to V A; W, q = 0) = \int_0^1 dz \int d^2 r \, \Psi_V^*(z, r) \Psi_\gamma(z, r) \underbrace{2 \int d^2 b \, \Gamma_A(x, b, r)}_{\sigma(x, r)}.$$

Here $x = M_V^2/W^2$, where W is the γp -cms energy. Ψ_{γ}, Ψ_V stand for the light-front wave functions (LFWFs) of the the virtual photon and J/ψ meson respectively.

• The small-r dehaviour of the dipole cross section

$$\sigma(\mathbf{x}, \mathbf{r}) = \frac{\pi^2}{N_c} \alpha_s(\mu^2) r^2 \, \mathbf{xg}(\mathbf{x}, \mu^2), \quad \mu^2 = \frac{A}{r^2} + \mu_0^2.$$

leads to the proportionality of the cross section to the **square of the gluon density** (Ryskin's formula):

$$\sigma(\gamma p \to J \psi p) = \frac{1}{16\pi B} \Big| \Im m A(W, \boldsymbol{q} = 0) \Big|^2 \propto \sigma^2(x, r_s) \propto [xg(x, \mu^2)]^2 \,.$$

• This motivates the study of photoproduction on **nuclei** as a probe of the **nuclear glue**. The "hard scale" is expected to be $\mu^2 \sim M_{J/\psi}^2/4$.

Predictions for J/ψ production on the proton target

• For the GBW and IIM dipole cross sections, we calculate the total cross section from:

$$\sigma(\gamma p \to J/\psi p; W) = \frac{1 + \rho_N^2}{16\pi B} R_{\rm skewed}^2 |\langle V|\sigma(x, r)|\gamma\rangle|^2$$

- The diffraction slope: $B = B_0 + 4\alpha' \log(W/W_0)$, with $B_0 = 4.88 \,\mathrm{GeV}^{-2}$, $\alpha' = 0.164 \,\mathrm{GeV}^{-2}$, and $W_0 = 90 \,\mathrm{GeV}$.
- For the BGK type of parametrizations, it proves to be more stable numerically to substitute the "skewed glue" in the exponent:

$$\sigma(x,r) = \sigma_0 \left(1 - \exp\left[-\frac{\pi^2 r^2 \alpha_s(\mu^2) R_{\text{skewed}} x g(x,\mu^2)}{3\sigma_0} \right] \right),$$

• For gluons exchanged in the amplitude carry different longitudinal momenta, at small $x = M_V^2/W^2$ we have typically, say $x_1 \sim x, x_2 \ll x_1$. In such a situation, the corresponding correction which multiplies the amplitude is Shuvaev's factor:

$$\mathsf{R}_{\mathrm{skewed}} = rac{2^{2\Delta_{\mathbf{P}}+3}}{\sqrt{\pi}} \cdot rac{\mathsf{\Gamma}(\Delta_{\mathbf{P}}+5/2)}{\mathsf{\Gamma}(\Delta_{\mathbf{P}}+4)}$$

Predictions for J/ψ production on the proton target

A. Łuszczak, W. S., Phys. Rev. C 99, no.4, 044905 (2019)

- Total cross section for the exclusive photoproduction $\gamma p \to J/\psi p$ as a function of $\gamma p\text{-cms}$ energy W
- We observe that the range of $30 \lesssim W \lesssim 300 {\rm GeV}$ is reasonably well described by all dipole cross sections.

Formalism: Nuclear target

- For the nuclear targets color dipoles can be regarded as **eigenstates of the interaction** in the sense of Good–Walker or Miettinen–Pumplin, and we can apply the standard rules of Glauber theory.
- The Glauber form of the dipole scattering amplitude for $l_c \gg R_A$ (the coherence length is much larger than the nuclear size) is:

$$\Gamma_A(x, \boldsymbol{b}, \boldsymbol{r}) = 1 - \exp[-\frac{1}{2}\sigma(x, r)T_A(\boldsymbol{b})]$$

• The dipole amplitude corresponds to a rescattering of the dipole in a purely absorptive medium. The real part of the dipole-nucleon amplitude is often neglected. It induces the refractive effects and instead of first eq. we should take:

$$\Gamma_A(x, \boldsymbol{b}, \boldsymbol{r}) = 1 - \exp[-\frac{1}{2}\sigma(x, r)(1 - i\rho_N)T_A(\boldsymbol{b})]$$

• The optical thickness $T_A(\mathbf{b})$ is calculated from a Wood-Saxon distribution $n_A(\vec{r})$:

$$T_A(\boldsymbol{b}) = \int_{-\infty}^{\infty} dz \, n_A(\vec{r}) \, ; \, \vec{r} = (\boldsymbol{b}, z), \, \int d^2 \boldsymbol{b} \, T_A(\boldsymbol{b}) = A$$

• The diffractive amplitude in **b**-space is:

$$\mathcal{A}(\gamma A \rightarrow VA; W, \mathbf{b}) = 2i \langle V | \Gamma_A(x, \mathbf{b}, \mathbf{r}) | \gamma \rangle \mathcal{F}_A(q_z)$$

- The nuclear form factor $\mathcal{F}_A(q) = \exp[-R_{ch}^2 q^2/6]$ depends on the finite longitudinal momentum transfer $q_z = xm_N$. It "switches off" the diffractive production if the coherence length becomes too small.
- The total cross section for the $\gamma A \rightarrow V\!A$ reaction is obtained as:

$$\sigma(\gamma A \to VA; W) = \frac{1}{4} \int d^2 \boldsymbol{b} \left| \mathcal{A}(\gamma A \to VA; W, \boldsymbol{b}) \right|^2$$

W.Schäfer (IFJ PAN)

Saturation scale

- The overlap of LFWFs of photon and J/ψ leads to the dominance of dipole sizes around the "scanning radius" $r_{\rm s} \sim 0.1 {\rm fm.}$ (Kopeliovich, Nikolaev, Zakharov)
- The large opacity of a heavy nucleus introduces the saturation scale:

$$Q_A^2(x, \boldsymbol{b}) = rac{4\pi^2}{N_c} lpha_s(Q_A^2) x g(x, Q_A^2) T_A(\boldsymbol{b}),$$

in terms of which the dipole-nucleus S-matrix takes the form (Mueller):

$$S_A(x, \boldsymbol{r}, \boldsymbol{b}) = 1 - \Gamma_A(x, \boldsymbol{r}, \boldsymbol{b}) = \exp\left[-\frac{1}{8}Q_A^2(x, \boldsymbol{b})r^2
ight].$$

• Therefore the scale

$$r_A=rac{2\sqrt{2}}{Q_A}\,,$$

separates standard **hard processes** with $r_s \ll r_A$, for which the leading twist pQCD factorization works, from processes in the strongly absorptive saturation regime $r_s \gtrsim r_A$.

• We estimated $\langle Q_A^2(\mathbf{b}) \rangle \sim 0.9 \,\mathrm{GeV}^2$ for $A^{1/3} = 6$ and $x \sim 0.01$. Compare this to the hard scale $Q^2 = M_{J/\psi}^2/4 \sim 2.25 \,\mathrm{GeV}^2$. For diffractive J/ψ photoproduction on lead we are therefore in a regime ,where we may regard the rescatterings included in the Glauber-Gribov form as a summation of higher-twist corrections, r_s^2/r_A^2 .

Nuclear shadowing and diffraction in the dipole picture Nikolaev, Zakharov 1990

 On a deuteron, where we can have at most have double scattering, nuclear shadowing can be calculated (following Gribov) from the diffractive cross section:

$$\sigma_{\gamma^* D} = \sigma_{\gamma^* p} + \sigma_{\gamma^* n} - \delta\sigma$$

with

$$\delta\sigma = \int dM_X^2 \frac{d\sigma(\gamma^* p \to Xp)}{dt dM_X^2} \Big|_{t=0} \cdot \underbrace{\mathcal{F}_D(4q_z^2)}_{\text{Deuteron formfactor}}, \quad q_z = \frac{Q^2 + M_X^2}{2E_\gamma}.$$

• in the dipole approach small mass diffraction $(M_X^2 \sim Q^2)$ is described by diffractive dissociation $\gamma^* p \rightarrow q\bar{q}p$:

$$\frac{d\sigma(\gamma^* p \to q\bar{q}p)}{dt dM_X^2}\Big|_{t=0} = \frac{1}{16\pi} \int_0^1 dz d^2 \mathbf{r} \left|\Psi_\gamma^*(z,\mathbf{r})\right|^2 \sigma^2(x,\mathbf{r}) \,.$$

while large mass diffraction $M_X^2 \gg Q^2$ ("triple Pomeron regime")

$$\frac{d\sigma(\gamma^* p \to X p)}{dt dM_X^2}\Big|_{t=0} = \frac{G_{3\mathbf{P}}}{M_X^2}$$

is described by $\gamma^* p \rightarrow q \bar{q} g p$.

• Diffractive structure functions at HERA can be described with $q\bar{q}, q\bar{q}g$ excitation. (Bartels, Ellis, Kowalski, Wüsthoff (1999), Golec-Biernat, Łuszczak (2009))

W.Schäfer (IFJ PAN)

P P P P P

 at high energies/small-x (x ≪ x_A ~ 0.01) we need to take into account also the contribution of the qq̄g-Fock state, and possibly higher qq̄g₁g₂...g_n states. This gives rise to the color dipole form of BFKL.

• The dipole cross section for the $q\bar{q}g$ state on the nucleon is Nikolaev, Zakharov, Zoller '93

$$\sigma_{q\bar{q}g}(x, \boldsymbol{\rho_1}, \boldsymbol{\rho_2}, \boldsymbol{r}) = \frac{C_A}{2C_F} \left(\sigma(x, \boldsymbol{\rho_1}) + \sigma(x, \boldsymbol{\rho_2}) - \sigma(x, \boldsymbol{r}) \right) + \sigma(x, \boldsymbol{r})$$

• integrating over dz_g/z_g spectrum of the gluon, the dipole cross section changes as

$$\sigma(\mathbf{x},\mathbf{r}) = \sigma(\mathbf{x}_0,\mathbf{r}) + \log\left(\frac{\mathbf{x}_0}{\mathbf{x}}\right) \int d^2 \boldsymbol{\rho}_1 |\psi(\boldsymbol{\rho}_1) - \psi(\boldsymbol{\rho}_2)|^2 \Big\{ \sigma_{q\bar{q}g}(\mathbf{x}_0,\boldsymbol{\rho}_1,\boldsymbol{\rho}_2,\mathbf{r}) - \sigma(\mathbf{x}_0,\mathbf{r}) \Big\}$$

infrared "regularization" for large dipoles

$$\psi(\boldsymbol{\rho}) = \frac{\sqrt{C_F \alpha_s(\min(\rho, r))}}{\pi} \frac{\boldsymbol{\rho}}{\rho R_c} K_1\left(\frac{\rho}{R_c}\right), \quad \text{with} \quad R_c \sim 0.2 \div 0.3 \text{fm}.$$

• freezing of $\alpha_s(r)$ for $r > R_c$.

Contribution of $c\bar{c}g$ Fock-state to the nuclear amplitude

• Integrating over all variables but the dipole size r, the effect of the gluon is a change of the $q\bar{q}$ dipole amplitude ($x_A \sim 0.01$):

$$\Gamma_A(x, \boldsymbol{r}, \boldsymbol{b}) = \Gamma_A(x_A, \boldsymbol{r}, \boldsymbol{b}) + \log\left(\frac{x_A}{x}\right) \Delta \Gamma(x_A, \boldsymbol{r}, \boldsymbol{b})$$

qq̄g-contribution:

$$\Delta \Gamma(x_{A}, \mathbf{r}, \mathbf{b}) = \int d^{2} \rho_{1} |\psi(\rho_{1}) - \psi(\rho_{2})|^{2} \Big\{ \Gamma_{A}(x_{A}, \rho_{1}, \mathbf{b} + \frac{\rho_{2}}{2}) + \Gamma_{A}(x_{A}, \rho_{2}, \mathbf{b} + \frac{\rho_{1}}{2}) \\ - \Gamma_{A}(x_{A}, \mathbf{r}, \mathbf{b}) - \Gamma_{A}(x_{A}, \rho_{1}, \mathbf{b} + \frac{\rho_{2}}{2}) \Gamma_{A}(x_{A}, \rho_{2}, \mathbf{b} + \frac{\rho_{1}}{2}) \Big\}$$

• This is, up to our treatment of large dipoles, one iteration of the Balitsky-Kovchegov equation, including the *nonlinear term*.

$c\bar{c}g$ contribution to the diffractive amplitude

• The nuclear effect is best quantified by the ratio of the cross section including all nuclear modification effects to the impulse approximation.

$$\sigma_{IA}(\gamma A \to J/\psi A; W) = 4\pi \frac{d\sigma(\gamma p \to J/\psi p)}{dt}|_{t=0} \int d^2 b T_A^2(b) F^2(q_z^2).$$

• We calculate the ratio

$$R_{
m coh} = rac{\sigma(\gamma A o J/\psi A; W)}{\sigma_{IA}(\gamma A o J/\psi A; W)}$$

including $c\bar{c}$ and $c\bar{c}g$ contributions, but in the IA we switch off the nonlinear piece in the $c\bar{c}g$ amplitude.

cross section:

$$\sigma(\gamma A \to J/\psi A) = R_{\rm coh} \, 4\pi B(W) \, \sigma(\gamma p \to J/\psi p) \, \int \, d^2 \boldsymbol{b} \, T_A^2(\boldsymbol{b}) \, F_A(q_z^2) \, .$$

Calculating the total cross section without and with $c\bar{c}g$ state

• the calculation without $c\bar{c}g$ states is simply the Glauber–Gribov exponential

$$\Gamma_A(x, \boldsymbol{b}, \boldsymbol{r}) = 1 - \exp[-\frac{1}{2}\sigma(x, r)T_A(\boldsymbol{b})]$$

• We include the $c\bar{c}g$ state by adding

$$\Gamma_A(x, \boldsymbol{r}, \boldsymbol{b}) = \Gamma_A(x_A, \boldsymbol{r}, \boldsymbol{b}) + \log\left(\frac{x_A}{x}\right) \Delta \Gamma(x_A, \boldsymbol{r}, \boldsymbol{b})$$

• in impulse approximation, we use for the $c\bar{c}$ state

$$\Gamma_{IA}(x, \boldsymbol{b}, \boldsymbol{r}) = \frac{1}{2}\sigma(x, r)T_A(\boldsymbol{b})$$

and **omit the nonlinear term** in $\Delta\Gamma_A$.

• We use the parameter $\mu_{G}=$ 0.7 $GeV \Leftrightarrow R_{c}=0.28\,{\rm fm}.$ The running coupling is parametrized as

$$lpha_s(r) = rac{4\pi}{9} rac{1}{\log\left(rac{C}{r^2\Lambda^2}
ight)}, \quad C = 1.5, \Lambda = 0.3\,\mathrm{GeV}\,.$$

and is **frozen for** $r \geq R_c$.

• We then add both contributions to obtain a smooth total cross section as

 $\sigma(\gamma A \to J/\psi A; W) = (1 - f(W))\sigma_{c\bar{c}}(\gamma A \to J/\psi A; W) + f(W)\sigma_{c\bar{c}+c\bar{c}g}(\gamma A \to J/\psi A; W)$ with

$$f(W) = \frac{1}{2} \left\{ 1 + \tanh\left(\frac{W - W_0}{W_1}\right) \right\}$$

with $W_0 = 50 \,\mathrm{GeV}$, $W_1 = 5 \,\mathrm{GeV}$.

Results for photoproduction with $c\bar{c}g$ contribution

A. Łuszczak, W. S., Phys. Lett. B 856 138917 (2024)

- The total cross section $\sigma(\gamma A \to J/\psi A)$ for the ²⁰⁸Pb nucleus as a function of γA -cm energy W.
- The impulse approximation fails dramatically, which illustrates the scale of nuclear effects. A large part of the nuclear suppression can be explained by Glauber-Gribov rescattering of the $c\bar{c}$ state alone.
- The calculations including the effect of the $c\bar{c}g$ state show an additional suppression of the nuclear cross section, as required by experimental data. We used the GBW dipole cross section.

W.Schäfer (IFJ PAN)

• Exclusive photoproduction in ultraperipheral heavy-ion collisions: the left-moving ion serves as the photon source, and the right-moving one serves as the target.

• The rapidity-dependent cross section for exclusive J/ψ production from the Weizsäcker-Williams fluxes of quasi-real photons $n(\omega)$ as:

$$\frac{d\sigma(AA \to AAJ/\psi; \sqrt{s_{NN}})}{dy} = n(\omega_{+})\sigma(\gamma A \to J/\psi A) + n(\omega_{-})\sigma(\gamma A \to J/\psi A)$$

• We use the standard form of the Weizsäcker-Williams flux for the ion moving with boost γ :

$$n(\omega) = \frac{2Z^2 \alpha_{\rm em}}{\pi} \left[\xi K_0(\xi) K_1(\xi) - \frac{\xi^2}{2} (K_1^2(\xi) - K_0^2(\xi)) \right]$$

• ω is the photon energy, and $~\xi=2R_{\!A}\omega/\gamma$

$\sqrt{s_{NN}} = 2.76 \text{ TeV}$						
у	$W_+[GeV]$	$W_{-}[GeV]$	<i>x</i> +	x_	$n(\omega_+)$	$n(\omega_{-})$
0.0	92.5	92.5	$1.12 \cdot 10^{-3}$	$1.12 \cdot 10^{-3}$	69.4	69.4
1.0	152	56.1	$4.13 \cdot 10^{-4}$	$3.05 \cdot 10^{-3}$	39.5	100
2.0	251	34.0	$1.52 \cdot 10^{-4}$	8.29 · 10 ⁻³	14.5	132
3.0	414	20.6	5.59 · 10 ⁻⁵	2.25 · 10 ⁻²	1.68	163
3.8	618	13.8	$2.51 \cdot 10^{-5}$	$5.02 \cdot 10^{-2}$	0.03	188

Table: Subenergies W_{\pm} and Bjorken-x values x_{\pm} for $\sqrt{s_{NN}} = 2.76 \text{ TeV}$ for a given rapidity y. Also shown are photon fluxes $n(\omega_{\pm})$.

$\sqrt{s_{NN}} = 5.02 \mathrm{TeV}$						
у	$W_+[\text{GeV}]$	$W_{-}[GeV]$	<i>x</i> +	x_	$n(\omega_+)$	$n(\omega_{-})$
0.0	125	125	$6.17 \cdot 10^{-4}$	$6.17 \cdot 10^{-4}$	87.9	87.9
1.0	206	75.6	$2.27 \cdot 10^{-4}$	$1.68 \cdot 10^{-3}$	57.2	119
2.0	339	45.9	8.35 · 10 ⁻⁵	$4.56 \cdot 10^{-3}$	28.5	150
3.0	559	27.8	3.07 · 10 ⁻⁵	$1.24 \cdot 10^{-2}$	7.5	181
4.0	921	16.9	$1.13 \cdot 10^{-5}$	3.37 · 10 ⁻²	0.35	213
4.8	1370	11.3	5.08 · 10 ⁻⁶	$7.50 \cdot 10^{-2}$	0.001	238

Table: Subenergies W_{\pm} and Bjorken-x values x_{\pm} for $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ for a given rapidity y.

Results for photoproduction in ultraperipheral collisions

A. Łuszczak, W. S., Phys. Rev. C 99, no.4, 044905 (2019), and work in progress

- Rapidity-dependent cross sections $d\sigma/dy$ for exclusive production of J/ψ in ²⁰⁸Pb²⁰⁸Pb collisions at per-nucleon c.m system energy $\sqrt{s_{NN}} = 2.76 \text{ TeV}$.
- For the $c\bar{c}g$ state we used the np. parameter $R_c = 0.28$ fm.

Results for photoproduction with $c\bar{c}g$ contribution

• Rapidity-dependent cross sections $d\sigma/dy$ for exclusive production of J/ψ in ²⁰⁸Pb²⁰⁸Pb collisions at per-nucleon c.m system energy $\sqrt{s_{NN}} = 5.02 \text{ TeV}$.

The putative "gluon shadowing"

A. Łuszczak, W. S., Phys. Lett. B 856 138917 (2024), for GBW dipole cross section:

- $R_g(x)$: is supposed to quantify the suppression (shadowing) of the per-nucleon glue in the nucleus at small-x.
- Impulse approximation baseline from a parametrization of Guzey et al. (2013) as this was also done in the analysis of the CMS collaboration (2023).
- CMS, [arXiv:2303.16984 [nucl-ex]]; ALICE, JHEP 10 (2023), 119.

W.Schäfer (IFJ PAN)

Standard Model I

- We base our approach on dipole cross sections that describe the total elastic photoproduction of J/ψ on the free nucleon.
- We have applied our results to the exclusive J/ψ production in heavy-ion (lead-lead) collisions at the energies $\sqrt{s_{NN}} = 2.76 \text{ GeV}$ and $\sqrt{s_{NN}} = 5.02 \text{ GeV}$, overall the description of data can be regarded satisfactory.
- Glauber-Gribov approach including only rescattering of the $c\bar{c}$ dipole works reasonably well in the forward region(large rapidities) when compared to LHCb data, but overpredicts suppression for ALICE data.
- In the central rapidity region inclusion of the $c\bar{c}g$ state indroduces additional shadowing which is needed to describe the data.
- The coherently scattering gluon can be viewed as a gluon shared by all nucleons. Therefore shadowing due to the $c\bar{c}g$ state can be (roughly) identified with gluon shadowing of the nuclear pdf. Extraction of the leading twist piece is a problem for the future. It depends on the infrared regulator, the gluon propagation radius R_c , and is not a prediction of perturbation theory alone.
- It will be very interesting to investigate virtual photoproduction at electron-ion colliders where we will
 have a large Q² and a studies of the Q² evolution of the gluon shadowing are possible.