The probability of inelastic scattering of protons at a fixed \vec{b} is given by averaging over the constituent positions inside the protons:

> $\tilde{\sigma}_{in}(b)=\;\vert\;$ −∞ +∞ \ldots −∞ +∞ $d^2 s_q d^2 s'_q d^2 s_d d^2 s'_d D(\vec{s}_q, \vec{s}_d) D(\vec{s}'_q, \vec{s}'_d) \sigma(\vec{s}_q, \vec{s}_d, \vec{s}'_q, \vec{s}'_d, \vec{b})$

The elastic scattering amplitude $\tilde{T}_{el}(s,b)$ is given via $\tilde{\sigma}_{in}(s,b)$ through the opacity function $\Omega(s,b)$: $\text{Re}\Omega(s, b) = -1/2\ln[1 - \tilde{\sigma}_{in}(s, b)], \ \ \text{Im}\Omega(s, b) = -\alpha_R \tilde{\sigma}_{in}(s, b), \ \ \tilde{T}_{el}(s, b) = i[1 - e^{-\Omega(s, b)}],$

where $b = |\vec{b}|$ and the dependence on s follows from the s-dependence of the free parameters.

The $T_{el}(s,t)$ is obtained from $\tilde{T}_{el}(s,b)$: $T_{el}(s,t) = \int d^2b e^{i\vec{q}\cdot\vec{b}} \, \tilde{T}_{el}(s,b)$, $|\vec{q}|^2 = -t$.

The new free parameter of the Levy α-stable generalized model is $\alpha_L^{},$ the Lévy index of stability; if $\alpha_L = 2$, the ReBB model with Gaussian distributions is recovered.

Acknowledgments and a settlements of the settlement of the s

The distribution of the constituents inside the proton is now given in terms of a Levy α-stable distribution:

 $D(\vec{s}_q, \vec{s}_d) = (1 + \lambda)^2 L(\vec{s}_q - \vec{s}_d | \alpha_L, R_{qd}/2) \delta^2(\vec{s}_q + \lambda \vec{s}_d),$

where $0 < \alpha_L \leq 2$. For $\alpha_L = 2$ the Lévy α-stable distribution is the Gaussian distribution:

The use of Gaussian distributions are motivated by the central limit theorem. Generalized central limit theorems motivate the use of Levy α-stable distributions. The bivariate Gaussian and symmetric Levy α-stable distributions centered at 0 are:

Introduction and preliminaries

Lévy α-stable generalization of the ReBB model of elastic pp and pp scattering

$$
\sigma(\vec{s}_q, \vec{s}_d, \vec{s}'_q, \vec{s}'_d, \vec{b}) = 1 - \prod_{a \in \{q, d\}} \prod_{b \in \{q, d\}} [1 - \sigma_{ab}(\vec{b} + \vec{s}'_b - \vec{s}_a)].
$$

The parton distributions of the constituent quark and the constituent diquark are now Levy α-stable distributions and the inelastic scattering probability for the collision of two constituents at a fixed relative transverse position \vec{x} of the constituents:

In 2015, the BB model was extended: a real part of the scattering amplitude was added in a unitary manner [3] leading to the Real extended Bialas-Bzdak model, the ReBB model for short. It was also found that the p=(q,d) version of the BB model is consistent with the experimentally observed features of elastic pp scattering. The $p = (q,d)$ version of the model describes the proton as a bound state of a constituent quark and a constituent diquark in a way that the diquark is treated as a single entity not as a bound state of two quarks. Two basic ingredients of the BB model are the inelastic scattering probabilities of two constituents as a function of their relative transverse position and the quark-diquark distribution inside the proton. The constituent-constituent inelastic scattering probabilities have Gaussian shapes that follow from the Gaussian-shaped parton distributions of the constituents characterized by the scale parameters R_q and R_d . The quark-diquark distribution inside the proton has also a Gaussian shape with scale parameter R_{ad} that characterizes the separation between the quark and the diquark constituents inside the proton. R_{q} R_{qd} R_d

$$
G(\vec{x}|R_G) = \frac{1}{2\pi R_G^2} e^{-\frac{\vec{x}^2}{2R_G^2}},
$$

$$
L(\vec{x}|\alpha_L, R_L) = \frac{1}{(2\pi)^2} \int d^2 q e^{-i\vec{q}\cdot\vec{x}} e^{-|\vec{q}^2 R_L^2|}^{\alpha_L/2},
$$

It was found in studies published in 2021 and 2022 [3, 4] that the ReBB model describes all the available data not only on elastic pp scattering but also on elastic protonantiproton $(p\bar{p})$ scattering in a statistically acceptable manner i.e. with a confidence level $(CL) \geq 0.1\%$ in the kinematic range:

$0.38 \text{ GeV}^2 \leq |t| \leq 1.2 \text{ GeV}^2$, 546 GeV $\leq \sqrt{s} \leq 8$ TeV, where t is the squared four-momentum

$$
L(\vec{x}|\alpha_L=2, R_L=R_G/\sqrt{2})\equiv G(\vec{x}|R_G).
$$

transfer and s is the squared center of mass energy. Based on the ReBB model analysis of elastic pp and $p\bar{p}$ scattering, statistically significant signals of the t -channel odderon exchange were observed [4, 5].

$$
\sigma_{ab}(\vec{x}) = A_{ab}\pi S_{ab}^2 \int d^2r_a L(\vec{r}_a|\alpha_L, R_a/2) L(\vec{x} - \vec{r}_a|\alpha_L, R_b/2) \equiv A_{ab}\pi S_{ab}^2 L(\vec{x}|\alpha_L, S_{ab}/2),
$$

Tamás Csörgő 1,2 , Sándor Hegyi 2 , István Szanyi 1,2,3

¹HUN-REN Wigner RCP, Budapest, Hungary

²MATE Institute of Technology, KRC, Gyöngyös, Hungary ³ELTE Eötvös Loránd University, Budapest, Hungary

ELTE EÖTVÖS LORÁND UNIVERSITY

[5] I. Szanyi, T. Csörgő, *Eur. Phys. J.* C **82** (2022) 9, 827 [6] PHENIX Collab., *Phys. Rev.* C **77** (2008) 064907 [7] TOTEM Collab., Nucl. Phys. B **899** (2015) 527 [8] T. Csörgő, S. Hegyi, I. Szanyi, *Universe* 2023, **9**(8), 361 [9] T. Csörgő, S. Hegyi, I. Szanyi, *Universe* 2024, **10**(3), 127

At \sqrt{s} = 8 TeV, the ReBB model describes the ATLAS low-|t| and the TOTEM high-|t| data simultaneously with $CL = 2.6%$ (the used χ^2 formula is the one derived by the PHENIX Collaboration [6]). At \sqrt{s} = 8 TeV, the ReBB model fails to describe the TOTEM low-|t| and the TOTEM high-|t| data simultaneously with $CL \geq 0.1\%$. The TOTEM low-|t| data shows a strong non-exponential behavior with a statistical significance grater than 7σ [7] which is not reproduced by the ReBB model containing Gaussian-shaped distributions.

Bialas-Bzdak (BB) models

In the p=(q,d) BB model the proton is a bound state of a constituent quark and a constituent diquark; the inelastic scattering probability of two protons at a fixed impact parameter vector (b) and at fixed constituent transverse position vectors $(\vec{s}_q, \vec{s}_d, \vec{s}'_q, \vec{s}'_d)$ is given by a Glauber expansion:

A. Bialas and A. Bzdak, in 2007, published models for elastic proton-proton (pp) scattering [1, 2], the BB models for short. In these models the proton is described as a bound state of constituent quarks, and the probability of inelastic pp scattering is constructed based on R. J. Glauber's diffractive multiple scattering theory: all possible single and multiple binary inelastic collisions of the constituents is considered in a way that constituent back scattering is prohibited; as a result, the collision of two protons is inelastic if at least one constituentconstituent collision is inelastic. The elastic scattering amplitude is then calculated based on the unitarity relation neglecting the sub-dominant real part of the scattering amplitude.

> The Lévy α-stable generalization of the Bialas-Bzdak model is done by generalizing from Gaussian shapes to Lévy α-stable shapes both (i) the inelastic scattering probabilities of two constituents and (ii) the quark-diquark distribution inside the proton. The LBB model is expected to describe simultaneously the low-|t| and high-|t| domains of elastic pp and $p\bar{p} d\sigma/dt$ with a Lévy index of stability $\alpha_L < 2$. Thus the next step is to apply the full LBB model to describe the data. Given that the LBB model describes the data in a statistically satisfying manner i.e. with $CL \geq 0.1\%$, it can be used to study, e.g, (i) the discrepancy between ATLAS and TOTEM cross section measurements, and (ii) after considering the effects of the Coulomb-nuclear interference, the odderon contribution to parameter $\rho_0 = \text{Re} T_{el}(s, t) / \text{Im} T_{el}(s, t) |_{t \to 0}$ at $\sqrt{s} = 13$ TeV.

ReBB model versus data

$$
\lambda = m_q/m_d, \quad \vec{s}_d = -\lambda \vec{s}_q, \quad \int d^2 s_q d^2 s_d D(\vec{s}_q, \vec{s}_d) = 1.
$$

where m_q is the mass of the quark and m_d is the mass of the diquark.

$$
S_{ab}^{\alpha_L} = R_a^{\alpha_L} + R_b^{\alpha_L}, \quad a, b \in \{q, d\}.
$$

Need for an improvement of the ReBB model at low-|t|

Levy α-stable generalized Bialas-Bzdak (LBB) model Illustration of the power of the Lévy α-stable generalization

The p = (q,d) Real extended Bialas-Bzdak (ReBB) model

Gaussian shape versus Levy α-stable shapes

Lévy α-stable distributions with $\alpha_L < 2$ have tails behaving asymptotically as a power law (infinite variance): for large x and $\alpha_L < 2$, $L(x|\alpha_L, R_L) \sim |x|^{-(1+\alpha_L)}$.

 α ields a purely exponential t -distribution, while a simple model with a Levy α -stable impact parameter amplitude and $\alpha_L < 2$ yields a non-exponential t-distribution [9].

A simple model of elastic scattering with a Gaussian impact parameter amplitude

$$
\tilde{T}_{el}(s,b) = \frac{i + \rho_0(s)}{2} \sigma_{tot}(s) G(b|\sqrt{B_0(s)}) \qquad d\sigma_{dt}(s,-t) = a(s)e^{-tB_0(s)}
$$
\n
$$
\tilde{T}_{el}(s,b) = \frac{i + \rho_0(s)}{2} \sigma_{tot}(s) L(b|\alpha_L, \sqrt{B_L(s)}) \qquad d\sigma_{dt}(s,-t) = a(s)e^{-|tB_L(s)|\alpha_L(s)/2}
$$

Summary

[1] A. Bialas, A. Bzdak, *Phys. Lett.* B **649** (2007) 263 [2] A. Bialas, A. Bzdak, *Acta Phys. Polon.* B **38** (2007) 159 [3] F. Nemes, T. Csörgő, M. Csanád, *Int. J. Mod. Phys.* A **30** (2015) 14, 1550076 [4] T. Csörgő, I. Szanyi, *Eur. Phys. J.* C **81** (2021) 7, 611

The research was supported by the ÚNKP-23-3 New National Excellence Program of the Hungarian Ministry for Innovation and Technology from the source of the National Research, Development and Innovation Fund; by the NKFIH grant K147557 and 2020-2.2.1-ED-2021-00181; by the Research Excellence Programme and the Flagship Research Groups Programme of the Hungarian University of Agriculture and Life Sciences.

The ReBB model calibrated to the SPS UA4 pp, Tevatron D0 $p\bar{p}$, and LHC TOTEM pp elastic $d\sigma/dt$ data in the kinematic range, $0.38 \text{ GeV}^2 \leq |t| \leq 1.2 \text{ GeV}^2$, 546 GeV $\leq \sqrt{s} \leq 7$ TeV, perfectly describes the pp σ_{tot} data as measured by the LHC ATLAS experiment being systematically below the pp σ_{tot} data as measured by the LHC TOTEM experiment. Theoretically, $\sigma_{tot}(s) = 2\text{Im}T_{el}(s, t = 0)$. Further studies may be important within a model that describes the elastic pp data both at low- $|t|$ and high- $|t|$ with $CL \geq 0.1\%$.

d

 q

 \overrightarrow{d}

q

′