

Balazs Csaba Kovacs (ELTE, MIT) on behalf of the CMS collaboration Poster Session, Diffraction and Low-x workshop, 8-14. Sept. 2024., Palermo

Why do we study charm photoproduction in **UPCs?**

EÖTVÖS LORÁND

UNIVERSITY | BUDAPEST

- They provide constraints on the nuclear parton-distribution functions (nPDFs) of gluons in nuclei down to low x and on the emergence of the saturation regime.
- Ultra-peripheral heavy-ion collisions (UPCs) are characterized by a $(10)^{2}$ clean experimental environment, without significant contamination from final-state interactions.
- Open-heavy flavor measurements provide access to a wide region of (x,Q^2) space.
- Since $m_{c,b} > \Lambda_{QCD}$, heavy-flavor measurements can be described by $(1)^2$ perturbative QCD calculations down to $p_T = 0$ GeV/c.

COIL

EE

 $\sim 11 \text{ m}$

 HE

Beam line

HB

EB

Tracker

Interaction point

 $(100)^{2}$

How our signal events look like?

- D⁰ mesons can be produced in ultra-peripheral Pb-Pb collisions in scatterings of quasi-real photons emitted by one nucleus with **partons** from the other colliding nucleus
- Leading-order direct process: a photon from one nucleus scatters directly on a gluon of the other nucleus and creates a $c - \overline{c}$ pair
 - The measurement includes contributions from:
 - Direct and resolved-photon mechanisms
 - Prompt (c \rightarrow D⁰) and non-prompt (b \rightarrow D⁰) events _{Pb}
 - Decay channel: $D^0 \rightarrow K^- \pi^+$ (and charge conj.)

New Level-1 trigger strategy for photoproduction with CMS:

- The CMS Level-1 (L1) trigger system uses custom hardware processes and fast information from the calorimeters to achieve the first significant data rate reduction
- **Challenge**: Very high rate compared to hadronic events \rightarrow need for a strong rate reduction and quick decision to maximize the collected statistics
- \rightarrow **Solution**: Level-1 trigger that uses both ZDC and HCAL/ECAL information
- CMS has a unique coverage for photonuclear measurements:
- Tracker: $|\eta| < 2.4$

- ECAL and HCAL: $|\eta| < 3.0$
- HF calorimeter: $3.0 < |\eta| < 5.2$
- ZDC: |η| > 8.3

Kinematic coverage and trigger choice:

- For high $p_T D^0$ ($p_T > 5$ GeV/c), L1 jet (8 GeV) trigger combined with ZDC exclusive OR condition (Xn0n or 0nXn)
- **For low p_T D^0 (2 < p_T < 5 GeV/c), jet** triggers become very inefficient \rightarrow L1 ZDCOR 1n: at least one of the ZDC signals under the 1 neutron threshold

 D^0 flight length

(decay length)

Offline event selections

ZDC selection: exactly one ZDC signal is above the 1n threshold (Xn0n or 0nXn, X>0)

ZDC

HCAL

 HF

 $\sim 140~{\rm m}$

- **Rapidity gap** on the side of "empty" ZDC: No particle flow candidate is found above a given energy in the HF calorimeter
- Primary vertex selection and beam gas/machine induced background rejection

Offline D⁰ selections

- D⁰ candidates reconstructed from oppositely charged pairs of high-purity tracks
- Rectangular cuts (validated with a BDT-based optimization), which exploit the following topological variables:

- 3D decay length, normalized by its uncertainty
- Pointing (α) and opening angles ($\Delta \theta$)
- Secondary vertex reconstruction probability

Efficiency and trigger corrections:

- Data-driven jet trigger correction in bins of $D^0 p_T$ and y
- MC-based (Pythia 8) corrections in bins of D^0 (p_T , y) used for event selection efficiency, D⁰ acceptance, reconstruction and selection efficiency
- Pythia 8 distributions of generated-level D⁰ reweighted according to FONLL-based predictions

flight

Secondary vertex

 $\mathbf{p}_{ ext{track }2}$

1.1.1.1.1.1

 K^{-}

Signal extraction and cross section calculations

- Signal yield extracted in intervals of $D^0 p_T$ and y with unbinned fits to the D^0 invariant mass distributions:
 - Double-Gaussian signal shape to model the distribution of signal D⁰
 - Single Gaussian for D⁰ candidates with wrong mass hypothesis
 - Exponential shape for the combinatorial background
 - Crystal Ball function templates for ${
 m D}^0 o {
 m K}^- {
 m K}^+$ and ${
 m D}^0 o \pi^- \pi^+$ decay channels
- Corrected cross section:

$\frac{d^2\sigma}{dp_{\rm T}dy}({\rm D}^0p_{\rm T},{\rm D}^0y) = \frac{1}{2}\frac{1}{\mathcal{LB}}\frac{N_{\rm D}^{\rm raw}}{\Delta p_{\rm T}\Delta y} \frac{1}{\epsilon_{\rm evt}\ \epsilon_{\rm trigger}\ P_{\rm prescale}\ \left(\alpha\ \epsilon_{\rm D}0\right)\ \epsilon_{\rm EM,pileup}$

Systematic uncertainties included for luminosity estimation, electromagnetic pileup correction, track reconstruction, event selection efficiencies, D⁰ acceptance, selection and reconstruction efficiencies, yield extraction, trigger correction, MC reweighting

Conclusions:

- New experimental constraints obtained on nuclear matter with heavy-quark observables in a large region of x and Q²
- This measurement opens the way for a new experimental program exploiting fully-reconstructed heavy-flavour hadrons and heavy-flavour jets in ultraperipheral heavy-ion collisions at the LHC.

National Research, Development and Innovation Office – NKFIH, K 146913

Supported by the EKÖP-24 university excellence scholarship program of the ministry for culture and innovation from the source of the national research, development and innovation fund.