

Collective properties of the nuclear matter at RHIC

Sonia Kabana (Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile and CCTVal, Valparaiso, Chile) and Vipul Bairathi (Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile)

9-14 September 2024 Hotel Tonnara Trabia, Palermo, Sicily, Italy

Relativistic Heavy-Ion Collider

STAR and PHENIX experiments

- EPD: Independent centrality detector, improved EP resolution, trigger
- Recent upgrades: FCS, FTS, EMcal & HCal, iTPC, eTOF
- TOF east and west: PID in the forward region
- BBC, ZDC: Event characterization, centrality and trigger
- Recent upgrades: sPHENIX

Beam energies and colliding systems RHIC

- Wide range of collision beam energies to explore QCD phase diagram
 - Beam Energy Scan Phase II (BES-II): $\sqrt{s_{NN}} = 7.7 54.4 \text{ GeV}$
 - Fixed Target (FXT): $\sqrt{s_{NN}} = 3.0 7.7 \text{ GeV}$
- Different collision species to study the QCD medium at top RHIC energy $\sqrt{s_{NN}} = 200 \text{ GeV}$
 - U+U, Au+Au, Ru+Ru, Zr+Zr, Cu+Cu, O+O, Cu+Au, *He*³+Au, *d*+Au, *p*+Au etc
- Increase in statistics over the years for precision measurement

https://www.agsrhichome.bnl.gov/RHIC/Runs/

Phase structure of QCD matter

Conjectured QCD phase diagram can be explored by beam energy scan in heavy-ion collisions

- Collective flow describe the response of the medium produced in heavy-ion collisions
- Collective flow can be quantified using the Fourier expansion:

$$E\frac{d^{3}N}{dp^{3}} = \frac{1}{2\pi} \frac{d^{2}N}{p_{T}dp_{T}dy} \left(1 + \sum 2v_{n}\cos n(\phi - \Psi_{n}^{EP})\right)$$

- Different flow coefficients:
 - \rightarrow Directed Flow (v₁): Sideward deflection of produced particles in the reaction plane
 - \rightarrow Elliptic Flow (v₂): Result of pressure gradients caused by the initial overlap geometry
 - \rightarrow Triangular Flow (v₃): Produced by event-by-event fluctuations in the initial shape
 - Sensitive to initial conditions, equation of state, transport properties (η/s) of system, and initial state fluctuations
 - Probe for the particle production mechanism (e.g. quark coalescence)

Directed flow $v_1(y)$ of hadrons across various beam energies with high μ_B

JAM model with momentum dependent baryonic mean-field describes baryon flow

STAR

NCQ scaling holds in Au+Au collisions from top RHIC energy $\sqrt{s_{NN}} = 200$ to 7.7 GeV

Partonic collectivity

Negative v₂ values and breaking of NCQ scaling at $\sqrt{s_{NN}} = 3 \text{ GeV}$

Indicative of medium dominated by hadronic interactions

L. Adamczyk et al. (STAR Collaboration) Phys. Rev. C 88, 014902 (2013)
 M. S. Abdallah et al. (STAR Collaboration), Phys. Rev. C 103, 034908 (2021); Phys. Lett. B. 827 137003 (2022)

NCQ scaling is broken in Au+Au collisions below 3.2 GeV and gradually improves in Au+Au collisions from 3.2 to 4.5 GeV

Indication of transition from hadronic dominated medium to partonic medium

B. Trzerziak et al (STAR) ICNFP 2024

STAR

The mid-rapidity v_1 slope of light and hyper-nuclei decreases with increasing collision energy JAM2 model with mean field + Coalescence is consistent with observed energy dependence Indicating coalescence as production mechanism at high μ_B

[3] Yasushi Nara, Akira Ohnishi. Phys. Rev. C 105, 014911 (2022)

Insights to light nuclei production mechanism in heavy-ion collisions

 [1] L. Adamczyk et al. (STAR Collaboration) Phys. Rev. C 88, 014902 (2013)
 [2] M. S. Abdallah et al. (STAR Collaboration), Phys. Rev. C 103, 034908 (2021)

 [3] M. S. Abdallah et al. (STAR Collaboration) Phys. Lett. B. 827 137003 (2022)
 [4] Z.-W. Lin et al., Phys. Rev. C 72, 064901 (2005)

Collectivity in small systems

Mass ordering of identified hadrons $v_2(p_T)$ is well-described by hydrodynamics in small systems

Collectivity in small systems

Charged hadron v_2 and v_3 are well-described by hydrodynamics in small systems Strong indication of QGP formation in small systems

Direct Photon Flow at PHENIX

First-ever RHIC measurement of open heavy flavor elliptic flow at forward rapidity Open heavy flavor v_2 consistent with PHENIX mid-rapidity results

PHENIX

Summary & Outlook

Collectivity in high μ_B region

- Absence of NCQ scaling at $\sqrt{s_{NN}} = 3$ and 3.2 GeV indicate baryonic interactions dominating nulcear EoS
- NCQ scaling gradully improves from 3.2 to 4.5 GeV, indicating dominance of partonic interactions for $\sqrt{s_{NN}} >= 4.5 \text{ GeV}$

Light nuclei collectivity

• Hadronic transport model (JAM + Coalescence) indiacates coalescence to be the dominant mechanism of light and hyper nuclei production in heavy-ion collisions

Direct photon collectivity

• Elliptic flow of direct photons in high p_T region is consistent with zero

Open Heavy-Flavor flow

• Open heavy flavor v_2 first-ever RHIC measurement in mid and forward rapidity

More exciting results to come from the high statistics data of BES and FXT program RHIC Collectivity from small to large systems and measurements in wider rapidity ranges using forward detectors enable us to explore the QGP properties, phase transition and more....