MEASUREMENTS OF THE Z⁰ CROSS SECTION AND TRANSVERSE SINGLE SPIN ASYMMETRY IN 510 GEV PP COLLISIONS

XIAOXUAN CHU

BROOKHAVEN NATIONAL LABORATORY

Abstract

The differential cross section for Z^0 boson production, measured as a function of the boson's transverse momentum p_T , provides critical insights into the evolution of transverse momentum dependent parton distribution functions (TMDs). The transverse single spin asymmetry (A_N , TSSA) of the Z^0 boson is particularly sensitive to one of the polarized TMDs, the Sivers function, which is predicted to have an opposite sign in p+p \rightarrow W/Z+X processes compared to that observed in semi-inclusive deep inelastic scattering (SIDIS). In this poster, we present the first measurement of the Z^0 differential cross section as a function of p_T in p+p collisions at a center-of-mass energy of 510 GeV, along with the total cross section as published by the STAR Collaboration. Additionally, we report the measurement of the Z^0 TSSA in transversely polarized p+p collisions at 510 GeV.

IntroductionSTAR detector for Z^0 reconstructionThe internal structure of protons, described by their parton distribution
functions, is an important topic in theoretical, phenomenological, and
experimental studies in nuclear physics.YTransverse momentum dependent parton distribution functions (TMDs), $p + p \rightarrow Z^0 \rightarrow e^+e^-$

- which encode both the parton's longitudinal momentum fraction (x) and its intrinsic transverse momentum (k_T), depict the density of partons in three dimensions.
- Experimentally, unpolarized TMDs can be extracted from Z^0 boson p_T spectrum, if the transverse momentum of the lepton pair is sufficiently small compared to Q, where Q is the mass of Z^0 . Additionally, the Sivers function, one of the polarized TMDs, can be probed through measurements of the transverse single spin asymmetry of Z^0 in polarized p+p collisions.

STAR detector and $Z^0 \rightarrow e^+e^-$ event display

- RHIC operates at an intermediate collision energy:Provides complementary data to the LHC and Tevatron experiments.
- □ Offers access to the large *x* region, enabling studies of TMD evolution as a function of *x*.

 Z^0 channel at STAR complements data to SIDIS measurement from other experiments, enabling studies of TMD evolution as a function of Q^2 .

As the world's only polarized p+p collider, RHIC uniquely allows Z^0 TSSA measurements at STAR, providing an opportunity to test the non-universality of the Sivers asymmetry predicted in

RHIC Spin Collaboration, RHIC Spin Plan

p+p collisions compared to that in SIDIS.

Summary and outlook

Acknowledgements

The p_T spectrum of the Z⁰ measured at STAR, together with results from other experiments on DY, SIDIS, and Z⁰, provide important constraints on the x and Q² evolution as well as the process dependence of the unpolarized TMDs.
The result of A_N can accommodate the sign change hypothesis that is based on the non-universality property of the Sivers function between DY/Z/W production and SIDIS, it cannot conclusively verify the prediction.

We thank the STAR Collaboration, RHIC Operations Group and RCF at BNL. Special thanks go to my collaborators: Elke-Caroline Aschenauer and Salvatore Fazio.

Precision will be improved using p+p data at 508 GeV that STAR collected in 2022.

