Overview of latest ALICE UPC and photonuclear results

Simone Ragoni, on behalf of the ALICE collaboration Creighton University, USA

Creighton UNIVERSITY

OUR UPC PHYSICS PROGRAM IS THE FORERUNNER OF EIC

²⁰⁸Pb

- Excited ρ^0 states
- Exclusive charged *KK* production
- Quasireal photons and experimentally available observables
- The future of UPC in ALICE

- Excited ρ^0 states
- Exclusive charged *KK* production
- Quasireal photons and experimentally available observables
- The future of UPC in ALICE

Photoproduction of excited ρ -meson states

ALICE, JHEP 06 (2020) 035

- Resonance-like structure observed in $\pi^+\pi^-$ invariant mass distribution
- Observed by STAR too

Exclusive 4π photoproduction

- Two interfering BW: ho(1450) and ho(1700)
 - Cross sections in better agreement with KGTT calculations

ر 140 ((dydm) (mb/(GeV/c²)) 10 (dydm) (mb/(GeV/c²) ALICE, Pb + Pb \rightarrow Pb + Pb + $\pi^{+}\pi^{-}\pi^{+}\pi^{-}$ χ^2 /ndf = 18 / 21 $\sqrt{s_{_{ m NN}}} = 5.02 \text{ TeV}, |y_{\pi^+\pi^-\pi^+\pi^-}| < 0.5$ Prob = 65%Data Total Uncorr. Syst. ALICE ρ(1450) Total Unc. ALICE ρ(1700) Interference BB× 40 20 2.2 1.2 1.4 1.6 1.8 2 2.4 $m_{\pi^{+}\pi^{-}\pi^{+}\pi^{-}}$ (GeV/c²) ALI-PUB-569314 KGTT: M. Klusek-Gawenda, D. Tapia Takaki,

Acta Rhys. Polon- B 51 (2020) 1393

ALICE, arXiv:2404.07542

ALI-PUB-569318

- Excited ρ^0 states
- Exclusive charged *KK* production
- Quasireal photons and experimentally available observables
- The future of UPC in ALICE

$p_{\rm T}^2$ distribution of K^+K^- photoproduction...

- Exclusive K^+K^- photoproduction as a function of $p_{\rm T}^2 \sim |t|$
- Simple exponential function from parametrised coherent ρ^0 describes the data fairly well
- Cross section at low values of $p_{\rm T}^2$ agree with photoproduction with destructive interference
 - Both nuclei can be photon source or targets

ALICE, Phys.Rev.Lett. 132 (2024) 22, 222303

ALI-PUB-574529

...and its invariant mass distribution

- Possible background from $\gamma\gamma \rightarrow f_2 \rightarrow KK$ small
 - Signal composition of $\phi \to KK$ and non-resonant KK

- Excited ρ^0 states
- Exclusive charged *KK* production
- Quasireal photons and experimentally available observables
- The future of UPC in ALICE

Photons in UPC are linearly polarised

Fig. from D. Brandenburg

 $v \approx c$ $v \approx c$ \vec{R} \vec{E}

- Ultra-relativistic charged nuclei produce highly Lorentz contracted electromagnetic fields
- Quasireal photons should be linearly polarised in the transverse plane
- Different tools to appreciate it:
 - Birefringence of the QED vacuum
 - Polarisation of photoproduced vector mesons
 - Anisotropy in ρ^0 photoproduction

- 8000

"ALICE DOES THE DOUBLE-SLIT" HOME.CERN, AUG 12TH, 2024

208 DI

Where does the interference comes from?

- Linearly polarised photons
- Polarisation transferred to ho^0
- Azimuthal $\cos 2\phi$ modulation of decay products in momentum with respect to the spin direction
 - Spinless pions → polarisation transferred to orbital angular momentum
- Photon emission ambiguity (which nucleus was the photon emitter and the target) causes interference
 - Anisotropy preserved by a term $\exp(i\vec{p}\cdot\vec{b})$ in the cross section

Preparing a femtometre scale double-slit

Neutron emission:

 Additional photon exchanges may lead to neutron emission

- Using the neutron ZDCs on the A and C side to detect the neutrons!
- E.g. 0N0N: no neutrons on either ZDCs

• E.g. 0NXN: neutrons only on one side

• Effectively leveraging on the impact parameter

Preparing a femtometre scale double-slit

Neutron emission:

 Additional photon exchanges may lead to neutron emission

See talk by A. Khatun for more details of the neutron emission technique: <u>https://</u> <u>indico.cern.ch/event/1354173/</u> <u>contributions/6078671/</u>

- Using the neutron ZDCs on the A and C side to detect the neutrons!
- E.g. 0N0N: no neutrons on either ZDCs
- E.g. ONXN: neutrons only on one side

• Effectively leveraging on the impact parameter

Angular anisotropy ρ^0 with neutron emission

- ϕ : angle between the transverse components of \vec{p}_+ and \vec{p}_- with $\vec{p}_{\pm} = \vec{\pi}_1 \pm \vec{\pi}_2$ with random assignment of the pion tracks (no charge)
- Simultaneous fit to all classes to account for class migrations

https://home.cern/news/news/physics/alice-does-double-slit Same technique: neutron emission classes → impact parameter range

Angular anisotropy ρ^0 with neutron emission

ALICE, arXiv:2405.14525 [nucl-ex], submitted to PLB

- Modulation increases as the impact parameter lowers
- ALICE results compatible with both theory and STAR results
- Modulation: linearly polarised photons + quantum interference at the fermi scale

https://home.cern/news/news/physics/alice-does-double-slit Same technique: neutron emission classes → impact parameter range

Angular anisotropy ρ^0 with neutron emission

ALICE, arXiv:2405.14525 [nucl-ex], submitted to PLB

- Modulation increases as the impact parameter lowers
- ALICE results compatible with both theory and STAR results
- Modulation: linearly polarised photons + quantum interference at the fermi scale

Amplitudes of the $\cos 2\phi$ modulation

https://home.cern/news/news/physics/alice-does-double-slit Same technique: neutron emission classes → impact parameter range

ALICE IN THE FUTURE UPGRADES IN RUN 3 AND 4

ALICE in Run 3 and 4

- Significant increase in integrated lumi from about 0.8 nb⁻¹ for Run 2 to 13 nb⁻¹ for Run 3 and Run 4 together
- Great increase in statistics with continuous readout
- Uncertainties for nuclear suppression factor expected to be at the level of 4%
 - Nuclear shadowing studied as a function of x and Q^2
- New measurements e.g. bottomonium states
- MFT in Run 3, FoCal in Run 4!

	σ	Central 1	Forward 1
Meson		Total	Total 1
$ ho o \pi^+ \pi^-$	5.2b	5.5 B	4.9 B
$\rho' \to \pi^+ \pi^- \pi^+ \pi^-$	730 mb	210 M	190 M
$\phi \to {\rm K}^+ {\rm K}^-$	0.22b	82 M	15 M
${\rm J}/\psi \to \mu^+\mu^-$	1.0 mb	1.1 M	600 K
$\psi(\mathrm{2S}) o \mu^+ \mu^-$	30µb	35 K	19 K
$ m Y(1S) ightarrow \mu^+ \mu^-$	2.0 µb	2.8 K	880

PhPh

 $|y| < 0.9 \ 2.5 < |y| < 4$ CERN Yellow Rep. Monogr. 7 (2019) 1159-1410, arXiv 1812.06772 ALICE Simulation, $Pb + Pb \rightarrow Pb + Pb + V$ $\sqrt{s_{NN}} = 5.5 \text{ TeV}, L = 13 \text{ nb}^{-1}$ 0.8 (х) о.6 На 0.4 CMS Y(1S) pseudodata EPS09LO, $Q = m_{\gamma(1S)}^{2}/2$ ALICE Y(1S) pseudodata EPS09LO, $Q = m_{10}(2S)/2$ 0.2 ALICE $\psi(2S)$ pseudodata EPS09LO, $Q = m_{1/1}/2$ ALICE J/ψ pseudodata 10^{-4} 10^{-3} 10^{-2} 10

х

incoming

• Even the anisotropy measurement was limited by statistics

Charmonia photoproduction with FOCAL

 $3.2 < \eta < 5.8$

Technical Design Report of the ALICE Forward Calorimeter (FoCal), CERN-LHCC-2024-004

Charmonia photoproduction with FOCAL

- Measuring charmonia in FOCAL in the *ee* channel
- Reaching $W_{\gamma p} \sim 2$ TeV in pPb

A. Bylinkin, J. Nystrand, D. Tapia Takaki, 2023 J. Phys. G: Nucl. Part. Phys. **50** 055105

Future opportunities

• ALPs

- τ anomalous magnetic moment
- Tetraquarks

Future opportunities

• ALPs

- τ anomalous magnetic moment
- Tetraquarks

Axion-Like Particles (ALPs)

Mariola Kłusek-Gawenda et al., Phys. Rev. D 99 (2019) 9, 093013, e-Print: <u>1904.01243</u> [hep-ph]

Axion-Like Particles (ALPs)

 Measuring light-by-light scattering and looking for resonances in the invariant mass distribution

ALICE in Run 3+4+5 will cover a sizeable part of the unexplored phase space

Future opportunities

• ALPs

- τ anomalous magnetic moment
- Tetraquarks

τ anomalous magnetic moment

• $\vec{\mu}_s = g \frac{q}{2m} \vec{S}$

- Dirac magnetic moment: g = 2
- $a = \frac{g-2}{2}$
- Anomalous magnetic moment comes from corrections at higher order!

• Using UPC for the τ !

au sector 280 times more sensitive to SuSy than the muon

- $BR(\tau \rightarrow \mu \nu_{\mu} \nu_{\tau}) = 17.4 \%$
- $BR(\tau \to \pi^{\pm} + n\pi^0 + \nu_{\tau}) = 45.6 \%$

N. Burmasov et al.,

Comput.Phys.Commun. 277 (2022) 108388

τ anomalous magnetic moment

ALICE can focus on low- p_T tracks where most of the statistics is focused

- Indirect measurement of the τ anomalous magnetic moment
- Run 3 will provide the most precise value in Pb-Pb

CMS-SMP-23-005

Future opportunities

• ALPs

• τ anomalous magnetic moment

• Tetraquarks

Tetraquarks

- Photon-induced reactions
- $\gamma\gamma \to T_{4c} \to 4l$
- Photon flux is well known: basically accessing the wave function of the tetraquark!
- If possible, important to test the production mechanism: true, molecular...?
- All the X(6900) family, X(3872), potentially more

LHCb, J. Phys. G 41 (2014) 11, 115002 e-

<u>V. Gonçalves, B. Moreira, Phys. Lett. B 816 (2021) 136249 e-</u> Print: <u>2101.03798 [hep-ph]</u>

Thank you!

 $\frac{\text{Pb-Pb Run 2}}{\sqrt{s_{\text{NN}}} = 5.02 \text{ TeV}}$

- Linearly polarised UPC photons and related measurements
- New wealth of data from continuous readout and Run 3!
- Numerous exciting future
 opportunities leveraging on
 the very clean environment of
 UPCs!

Backup slides