NLO calculation for inclusive back-to-back dihadron in **DIS** in the saturation regime

Paul Caucal

SUBATECH. Nantes Université

Diffraction and low-x 2024 conference - Trabia - Sept 12, 2024

Why is TMD factorisation at small x interesting?

- Study the matching between small x and moderate x.
 ⇒ relevant for EIC phenomenology since x_g not necessarily ≪ O(0.01).
- Simplify the numerical evaluation of cross-sections at small x.
 ⇒ TMDs are in general easier to evaluate than CGC correlators of Wilson lines.
- Provide analytic expressions for the various TMDs in the saturation regime.
 ⇒ give pQCD motivated initial conditions to CSS evolution.

Outline

- TMD factorisation well established at LO for many processes at small x. $pA \rightarrow H + X, pA \rightarrow \gamma j + X, eA \rightarrow j + X, eA \rightarrow jj + X, etc$
- Improve the state of the art to NLO / NLO+Sudakov resummation. In this talk:
 - dihadron production in DIS
 - single-inclusive jet production in DIS. (if enough time)

Single inclusive jet production $\underset{000000}{\text{Single inclusive jet production}}$

Back-to-back di-jets in DIS

 \Rightarrow access to the Weizsäcker-Williams gluon TMD $G(x, \mathbf{q}_{\perp})$ in the back-to-back limit.

[Zheng, Aschenauer, Lee, Xiao, PRD 89 (2014) 7]

 \Rightarrow Similar pheno signal of saturation as in pA, cf STAR results and Zilong Chang's talk.

Single inclusive jet production

Kinematics and LO cross-section

• Def:
$$|\bm{P}_{\perp}| = |z_2 \bm{k}_{\perp,1} - z_1 \bm{k}_{\perp,2}| \gg |\bm{q}_{\perp}| = |\bm{k}_{\perp,1} + \bm{k}_{\perp,2}|$$

• In this limit, LO CGC x-section yields TMD factorization [Dominguez, Marquet, Xiao, Yuan, PRD 83 (2011)]

$$\left. \frac{\mathrm{d}\sigma^{\gamma^* \to q\bar{q}+X}}{\mathrm{d}^2 \boldsymbol{P}_{\perp} \mathrm{d}^2 \boldsymbol{q}_{\perp}} \right|_{\mathrm{LO}} \propto \mathcal{H}^{ij}(\boldsymbol{P}_{\perp}) \boldsymbol{G}^{ij}(\boldsymbol{x}, \boldsymbol{q}_{\perp}) + \mathcal{O}\left(\frac{\boldsymbol{q}_{\perp}}{\boldsymbol{P}_{\perp}}\right) + \mathcal{O}\left(\frac{\boldsymbol{Q}_s}{\boldsymbol{P}_{\perp}}\right)$$

See also [del Castillo, Echevarria, Makris, Scimemi, JHEP 01 (2021) 088]

• $G(x, \boldsymbol{q}_{\perp})$: WW gluon TMD

$$G^{ij}(x, \boldsymbol{q}_{\perp}) = \frac{-2}{\alpha_s} \int \frac{\mathrm{d}^2 \boldsymbol{b}_{\perp} \mathrm{d}^2 \boldsymbol{b}_{\perp}'}{(2\pi)^4} e^{-i\boldsymbol{q}_{\perp} \cdot (\boldsymbol{b}_{\perp} - \boldsymbol{b}_{\perp}')} \left\langle \mathrm{Tr} \left[\partial^i V^{\dagger}(\boldsymbol{b}_{\perp}) V(\boldsymbol{b}_{\perp}') \partial^j V^{\dagger}(\boldsymbol{b}_{\perp}') V(\boldsymbol{b}_{\perp}) \right] \right\rangle_x$$

 \Rightarrow can be obtained from the usual operator definition by taking the limit $x \rightarrow 0$.

Dominant NLO contributions

- High energy logs $\ln(1/x_g)$, with $x_g = (M_{q\bar{q}}^2 + Q^2)/(W^2 + Q^2)$.
 - \Rightarrow resummed via JIMWLK evolution of $G(x, \boldsymbol{q}_{\perp})$.

• Sudakov logarithms $\ln^2(P_{\perp}^2/q_{\perp}^2)$, $\ln(P_{\perp}^2/q_{\perp}^2)$

⇒ first computed at DLA in [Mueller, Xiao, Yuan, PRD 88 (2013)], calculation revisited in more details in [Taels, Altinoluk, Beuf, Marquet, JHEP 10 (2022) 184 and PC, Salazar, Schenke, Venugopalan, JHEP 11 (2022) 169]

 \Rightarrow resummed in a Sudakov soft factor/CSS evolution of the WW gluon TMD.

Introduction 0 Dihadron production at NLO

Single inclusive jet production 000000

TMD factorisation at NLO for back-to-back dijet production at small x

[PC, Salazar, Schenke, Stebel, Venugopalan, PRL 132 (8), 081902]

$$\begin{split} \left\langle \mathrm{d}\sigma_{\mathrm{NLO}}^{\lambda} \right\rangle_{x_{f}} &= \mathcal{H}_{\mathrm{LO}}^{\lambda, ii} \int \frac{\mathrm{d}^{2} \mathbf{r}_{bb'}}{(2\pi)^{4}} \mathbf{e}^{-i\mathbf{q}_{\perp}\cdot\mathbf{r}_{bb'}} \hat{G}^{0}(\mathbf{x}_{f}, \mathbf{r}_{bb'}) \\ &\times \left\{ 1 + \frac{\alpha_{s}(\mu_{R})}{\pi} \left[-\frac{N_{c}}{4} \ln^{2} \left(\frac{\mathbf{P}_{\perp}^{2} \mathbf{r}_{bb'}^{2}}{c_{0}^{2}} \right) - \mathbf{s}_{L} \ln \left(\frac{\mathbf{P}_{\perp}^{2} \mathbf{r}_{bb'}^{2}}{c_{0}^{2}} \right) \right. \\ &+ \beta_{0} \ln \left(\frac{\mu_{R}^{2} \mathbf{r}_{bb'}^{2}}{c_{0}^{2}} \right) + \mathcal{C}^{\lambda} (Q/M_{q\bar{q}}, \mathbf{z}_{1}, \mathbf{R}, \mathbf{x}_{f}/\mathbf{x}_{g}) \right] \right\} \end{split}$$

- x_f dependence of the gluon TMD given by collinearly improved BK-JIMWLK evolution (or collinear improved BFKL in the limit $q_{\perp} \gg Q_s$). Orthogonal approach to small-x improved DGLAP, cf Federico Silvetti talk.
- First line should be exponentiated à la CSS to resum large double and single Sudakov logs.

•
$$s_L = -C_F \ln(z_1 z_2) + N_c \ln(1 + Q^2/M_{q\bar{q}}^2) - C_F \ln(R^2)$$

 \Rightarrow agreement with [Hatta, Xiao, Yuan, Zhou, PRD 104 (2021) 5]

What about dihadron production?

- Instead of measuring two jets, measure two back-to-back hadrons.
- Phenomenologically more interesting at the EIC, as P_{\perp} can be smaller, $\mathcal{O}(1)$ GeV.
- For dihadron, final state collinear divergence is canceled by the DGLAP evolution of the collinear fragmentation function.
- Schematically, after rapidity factorisation thanks to collinearly improved BK-JIMWLK,

$$\frac{\mathrm{d}\sigma^{\gamma_{\lambda}^{\star}+A\to h_{1}h_{2}+X}}{\mathrm{d}^{2}\boldsymbol{k_{h1\perp}}\mathrm{d}^{2}\boldsymbol{k_{h2\perp}}\mathrm{d}\eta_{h1}\mathrm{d}\eta_{h2}}\Big|_{\mathrm{NLO}} = \int_{0}^{1} \frac{\mathrm{d}\zeta_{1}}{\zeta_{1}^{2}} \int_{0}^{1} \frac{\mathrm{d}\zeta_{2}}{\zeta_{2}^{2}} D_{h_{1}/q}(\zeta_{1},\mu_{F}^{2}) D_{h_{2}/q}(\zeta_{2},\mu_{F}^{2}) \times \left[\frac{\mathrm{d}\sigma^{\gamma_{\lambda}^{\star}+A\to q\bar{q}+X}}{\mathrm{d}^{2}\boldsymbol{k_{1\perp}}\mathrm{d}^{2}\boldsymbol{k_{2\perp}}\mathrm{d}\eta_{1}\mathrm{d}\eta_{2}} \Big|_{\mathrm{LO}} + \underbrace{\alpha_{s}\mathcal{I}(\boldsymbol{k_{1\perp}},\boldsymbol{k_{2\perp}},z_{1},z_{2};x_{f},\mu_{F})}_{\text{finite NLO impact factor}} \right]_{k_{i}^{\mu}=k_{h,i}^{\mu}/\zeta_{i}}$$

[See Bergabo, Jalilian-Marian, JHEP 01 (2023) 095], Fucilla, Grabovsky, Li, Szymanowski, Wallon, JHEP 03 (2023) 159 (diffractive case)]

Sudakov double logs in dihadron production

[PC, Salazar, arXiv:2405.19404]

• The limit $P_{\perp} \gg q_{\perp}$ of the NLO impact factor ${\cal I}$ contains the leading double Sudakov logarithm:

$$\alpha_{s}\mathcal{I} = -\frac{\alpha_{s}}{\pi} \left[\frac{C_{F}}{4} + \frac{C_{F}}{4} + \frac{N_{c}}{4} \right] \ln^{2} \left(\frac{P_{\perp}^{2} r_{bb'}^{2}}{c_{0}^{2}} \right) + \dots$$

- Sudakov double log differs from the dijet case via the two red $C_F/4$ coefficients.
- Physical interpretation: in-cone gluon radiations now contribute to the imbalance. For $R^2 \sim q_{\perp}/P_{\perp}$, dijet \sim dihadron.

Single inclusive jet production 000000

Conclusion 0

NLO result in the TMD limit

• The back-to-back limit of the NLO impact factor for dihadron production gives

$$\begin{split} & \frac{\mathrm{d}\sigma^{\gamma_{\lambda}^{\star}+A\to h_{1}h_{2}+X,(0)}}{\mathrm{d}^{2}\boldsymbol{k_{h2\perp}}\mathrm{d}^{2}\boldsymbol{k_{h2\perp}}\mathrm{d}\eta_{h1}\mathrm{d}\eta_{h2}} \bigg|_{\mathrm{NLO}} = \int_{0}^{1} \frac{\mathrm{d}\zeta_{1}}{\zeta_{1}^{2}} \int_{0}^{1} \frac{\mathrm{d}\zeta_{2}}{\zeta_{2}^{2}} D_{h_{2}/\bar{q}}(\zeta_{2},\mu_{F}^{2}) D_{h_{1}/q}(\zeta_{1},\mu_{F}^{2}) \\ & \times \mathcal{H}_{\mathrm{LO}}^{\lambda,0} \int \frac{\mathrm{d}^{2}\boldsymbol{b}_{\perp}\mathrm{d}^{2}\boldsymbol{b}_{\perp}'}{(2\pi)^{4}} e^{-i\boldsymbol{q}_{\perp}\cdot\boldsymbol{r}_{bb'}} \hat{G}^{0}(\boldsymbol{x}_{f},\boldsymbol{r}_{bb'}) \frac{\alpha_{s}}{\pi} \left\{ -\left[\frac{C_{F}}{2} + \frac{N_{c}}{4}\right] \ln^{2}\left(\frac{\boldsymbol{P}_{\perp}^{2}\boldsymbol{r}_{bb'}^{2}}{c_{0}^{2}}\right) \\ & +\left[C_{F}\left(\ln(\boldsymbol{z}_{1}\boldsymbol{z}_{2}) + \frac{3}{2}\right) - N_{c}\ln(1+\chi^{2})\right] \ln\left(\frac{\boldsymbol{P}_{\perp}^{2}\boldsymbol{r}_{bb'}^{2}}{c_{0}^{2}}\right) + \mathcal{C}_{\mathrm{MS}}^{\lambda}\left(\frac{\boldsymbol{x}_{g}}{\boldsymbol{x}_{f}}, \frac{\mu_{F}\boldsymbol{r}_{bb'}}{c_{0}}; Q/M_{q\bar{q}}, \boldsymbol{z}_{1}, \boldsymbol{z}_{2}\right)\right\}\,, \end{split}$$

- Single log computed as well, different from the jet case.
- No large logs in $C_{\overline{MS}}^{\lambda}$.

Resummation of new double log requires TMD fragmentation function!

- Preserve the universality of the Sudakov factor for the WW gluon TMD.
- Promote the collinear FF into TMD one.

$$D_{h/q}(z,\mu_F) o \overline{D}_{h/q}(z,\boldsymbol{q}_{\perp};\mu_F,\xi)$$

 CSS evolution with ξ of the TMD fragmentation function takes care of the new double logs! In coordinate space,

$$\overline{D}_{h/q}(\zeta, \mathbf{r}_{bb'}; \mu_F, P_\perp) = D_{h/q}(\zeta, \mu_F) \exp\left(-\frac{\alpha_s C_F}{\pi} \int_{c_0^2/r_{bb'}^2}^{\mathbf{P}_\perp^2} \frac{\mathrm{d}\mu^2}{\mu^2} \left[\frac{1}{2} \ln\left(\frac{Q^2}{\mu^2}\right) - \frac{3}{4}\right]\right)$$

with $\mu_{F} \sim c_{0}/r_{bb'} \sim q_{\perp}$.

• DGLAP evolution of FF from $\mathcal{O}(\Lambda_{\rm QCD}) \rightarrow \mu_F \sim c_0/r_{bb'}$ and CSS evolution from $c_0/r_{bb'} \rightarrow P_{\perp}$.

- Resummed expression $d\sigma = \mathcal{H} \otimes \mathcal{G}_{WW} \otimes \overline{\mathcal{D}}_{h_1/q} \otimes \overline{\mathcal{D}}_{h_2/\bar{q}}$ involves 3 resummations:
 - small x + CSS evolution of $\hat{G}^0(x_f, \mathbf{r}_{bb'}; P_{\perp})$
 - DGLAP + CSS evolution of $\overline{D}_{h/q}(\zeta, \mathbf{r}_{bb'}; \mu_F, P_{\perp})$

$$\begin{aligned} \mathrm{d}\sigma^{\gamma^{\star}+A\to h_{1}h_{2}+X}\Big|_{\mathrm{NLO}} &= \int_{0}^{1} \frac{\mathrm{d}\zeta_{1}}{\zeta_{1}^{2}} \int_{0}^{1} \frac{\mathrm{d}\zeta_{2}}{\zeta_{2}^{2}} \mathcal{H}_{\mathrm{LO}}^{\lambda}(\boldsymbol{P}_{\perp},\boldsymbol{Q},\boldsymbol{z}_{1},\boldsymbol{z}_{2}) \\ &\times \int \frac{\mathrm{d}^{2}\boldsymbol{b}_{\perp} \mathrm{d}^{2}\boldsymbol{b}_{\perp}'}{(2\pi)^{4}} e^{-i\boldsymbol{q}_{\perp}\cdot\boldsymbol{r}_{bb'}} \hat{G}^{0}(\boldsymbol{x}_{f},\boldsymbol{r}_{bb'};\boldsymbol{P}_{\perp}) \overline{D}_{h_{2}/\bar{q}}(\zeta_{2},\boldsymbol{r}_{bb'};\boldsymbol{\mu}_{F},\boldsymbol{P}_{\perp}) \overline{D}_{h_{1}/q}(\zeta_{1},\boldsymbol{r}_{bb'};\boldsymbol{\mu}_{F},\boldsymbol{P}_{\perp}) \\ &\times \left\{ 1 + \frac{\alpha_{s}}{\pi} \mathcal{C}_{\overline{\mathrm{MS}}}^{\lambda} \left(\frac{\boldsymbol{x}_{g}}{\boldsymbol{x}_{f}}, \frac{\boldsymbol{\mu}_{F}\boldsymbol{r}_{bb'}}{\boldsymbol{c}_{0}}; \boldsymbol{Q}/\boldsymbol{M}_{q\bar{q}}, \boldsymbol{z}_{1}, \boldsymbol{z}_{2} \right) + \mathcal{O}(\alpha_{s}^{2}) \right\} \end{aligned}$$

• NLO coefficient function in $\overline{\rm MS}$ scheme $\mathcal{C}^{\lambda}_{\overline{\rm MS}}$ analytically known. \Rightarrow straightforward (future) numerical implementation. Conclusion

Single inclusive jet production in DIS

[PC, Iancu, Mueller, Yuan, 2408.03129]

 \Rightarrow Measure **jets** in DIS events and bin in terms of P_{\perp} measured in Breit of dipole frame:

 $\frac{\mathrm{d}\sigma^{\textit{eA}\rightarrow\mathrm{e'+jet}+X}}{\mathrm{d}x_{\mathrm{Bj}}\mathrm{d}Q^{2}\mathrm{d}P_{\perp}}$

- \Rightarrow In the case of a hadron measurement, see Cyrille Marquet's talk on Monday.
- \Rightarrow Also accesses the sea quark TMD at small x in the limit $Q^2 \gg \pmb{P}_{\perp}^2$.

Single inclusive jet production 0 = 0000

TMD factorisation in SIDIS at LO

⇒ factorises in terms of the (sea) quark TMD depending, which itself depends on the gluon dipole $\mathcal{D}(x, \boldsymbol{q}_{\perp})$ [Marquet, Xiao, Yuan, PLB 682, 207 (2009)]

$$\frac{\mathrm{d}\sigma^{\gamma_{\mathrm{T}}^{\star}+A\to\mathrm{jet}+X}}{\mathrm{d}^{2}\boldsymbol{P}_{\perp}}\bigg|_{\mathrm{LO}} = \frac{8\pi^{2}\alpha_{\mathrm{em}}\boldsymbol{e}_{f}^{2}}{Q^{2}} \times \underbrace{\frac{N_{c}}{\pi^{2}}\int_{\boldsymbol{b}_{\perp}}\int\frac{\mathrm{d}^{2}\boldsymbol{q}_{\perp}}{(2\pi)^{2}}\mathcal{D}(\boldsymbol{x},\boldsymbol{q}_{\perp})\left[1-\frac{\boldsymbol{P}_{\perp}\cdot(\boldsymbol{P}_{\perp}-\boldsymbol{q}_{\perp})}{(\boldsymbol{P}_{\perp}^{2}-(\boldsymbol{P}_{\perp}-\boldsymbol{q}_{\perp})^{2})}\ln\frac{\boldsymbol{P}_{\perp}^{2}}{(\boldsymbol{P}_{\perp}-\boldsymbol{q}_{\perp})^{2}}\right]}_{\mathrm{sea quark TMD}}$$

 $\Rightarrow~$ is dominated by aligned jet configurations, i.e. $1-z\sim m{P}_{ot}^2/Q^2$ or $z\sim m{P}_{ot}^2/Q^2$.

Single inclusive jet production 000000

Outline of the NLO computation

- NLO calculation at small x for general jet kinematics performed in [PC, Ferrand, Salazar, JHEP 05 (2024) 110]. For single hadron, see [Bergabo, Jalilian-Marian, JHEP 01 (2023) 095 (inclusive), Fucilla, Grabovsky, Li, Szymanowski, Wallon, JHEP 02 (2024) 165 (diffractive)]
- Compute the NLO impact factor in the limit $Q^2 \gg P_{\perp}^2 \gg Q_s^2$.

$$\frac{\mathrm{d}\sigma_{\mathrm{CGC}}^{\gamma_{\mathrm{T}}^{*}+A\rightarrow q+X}}{\mathrm{d}^{2}\boldsymbol{P}_{\perp}}\bigg|_{\mathrm{NLO}} = \left.\frac{\mathrm{d}\sigma_{\mathrm{CGC}}^{\gamma_{\mathrm{T}}^{*}+A\rightarrow q+X}}{\mathrm{d}^{2}\boldsymbol{P}_{\perp}}\right|_{\mathrm{LO}}\left[1+\alpha_{s}\mathcal{I}(\boldsymbol{P}_{\perp},\boldsymbol{Q},\boldsymbol{R},\mathsf{x}_{f})\right] + \frac{1}{\alpha_{s}} \mathcal{I}(\boldsymbol{P}_{\perp},\boldsymbol{Q},\boldsymbol{R},\mathsf{x}_{f})$$

- High energy factorisation with collinearly improved BK/BFKL. [Altinoluk, Jalilian-Marian, Marquet, 2406.08277]
- NLO impact factor depends on the jet definition.

NLO Feynman graphs

Jet definition in DIS

- Several jet definitions are possible in DIS.
- Not all of them ensure factorisation of the fully inclusive **jet** cross section.

[Catani, Dokshitzer, Webber, PLB 285, 291 (1992), Webber, J. Phys. G 19, 1567 (1993)]

• Same phenomenon arises for TMD factorisation.

Jet def	distance measure	dipole frame NLO clustering condition $(R\ll 1)$
LI C/A	$d_{ij}=rac{\Delta R_{ij}^2}{R^2}$	$rac{M_{ij}^2 z^2}{oldsymbol{P}_\perp^2 R^2} \leq 1$
SI C/A	$d_{ij} = rac{1-\cos(heta_{ij})}{1-\cos(heta)}$ in Breit frame	$rac{M_{ij}^2 z^2}{Q^2 R^2} \leq 1$
new LI jet def	$d_{ij}=M_{ij}^2/(z_iz_jQ^2R^2)$	$rac{\mathcal{M}_{ij}^2}{z_i z_i Q^2 \mathcal{R}^2} \leq 1$

• Goal: find a jet definition which ensures TMD factorisation of the single inclusive jet cross-section.

Single inclusive jet production

Jet definition and Sudakov logarithms

• NLO Sudakov logs $L = \ln(Q^2/P_{\perp}^2)$ depend on the jet definition! For LI C/A (or anti- k_t):

 $\frac{\mathrm{d}\sigma^{\gamma_{\mathrm{T}}^{*}+A\to j(A)+X}}{\mathrm{d}^{2}\boldsymbol{P}_{\perp}}\Big|_{\mathrm{NLO}} = \frac{\mathrm{d}\sigma^{\gamma_{\mathrm{T}}^{*}+A\to j+X}}{\mathrm{d}^{2}\boldsymbol{P}_{\perp}}\Big|_{\mathrm{LO}} \times \frac{\alpha_{s}C_{F}}{\pi} \left[-\frac{3}{4}L^{2} + \left(\frac{3}{4} - \ln(R)\right)L + \mathcal{O}(1)\right]$ while for SI C/A ($\beta = 2$) and our new jet definition ($\beta = 0$) $\frac{\mathrm{d}\sigma^{\gamma_{\mathrm{T}}^{*}+A\to j(B)+X}}{\mathrm{d}^{2}\boldsymbol{P}_{\perp}}\Big|_{\mathrm{NLO}} = \frac{\mathrm{d}\sigma^{\gamma_{\mathrm{T}}^{*}+A\to j+X}}{\mathrm{d}^{2}\boldsymbol{P}_{\perp}}\Big|_{\mathrm{LO}} \times \frac{\alpha_{s}C_{F}}{\pi} \left[-\frac{1}{4}L^{2} + \left(\frac{3(1-\beta/2)}{4} + \ln(R)\right)L + \mathcal{O}(1)\right]$

• From CSS evolution of the quark TMD alone, we expect the log structure

$$\frac{\alpha_{s}C_{F}}{\pi}\left[-\frac{1}{4}L^{2}+\frac{3}{4}L\right]$$

 \Rightarrow TMD factorisation implies $\beta = 0$. New LI jet definition in DIS suitable for TMD factorisation with jets.

• Note that Sudakov DL for a jet measurement is half the DL for hadron measurement. 16/18

Single inclusive jet production $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Physical interpretation

• Our new clustering condition equivalent to $heta_{ij} \leq R heta_{
m jet}$ with $heta_{
m jet} \sim Q/q^+$.

• Angle of the jet set by its virtuality rather by its transverse momentum. (Naively, $\theta_{\text{jet}} \sim \frac{P_{\perp}}{zq^+}$.)

• Soft gluons contributing to Sudakov must have $\theta_g \gg \theta_{\text{jet}}$. \Rightarrow stronger constraint than $\theta_g \gg \frac{P_{\perp}}{2\sigma^+}!$

Aligned jet geometric configuration in dipole frame.

Conclusion

- NLO small x calculations are consistent with the TMD formalism at moderate x (CSS) provided
 - \Rightarrow one uses collinearly improved small x evolution equations,
 - \Rightarrow TMD fragmentation functions are used for final state hadronization.
- NLO small x calculations in the TMD limit can help us improve on TMD factorisation theorems at moderate x.
- Example with single inclusive jet production in DIS where TMD factorisation demands specific jet definition.
- Recent NLO calculation at small x open new interesting questions: interplay between small x/DGLAP/CSS evolution [Mukherjee, Skokov, Tarasov, Tiwari, PRD 109 (2024), PC, lancu, 2408.03129], functional form of the NLO coefficient function in high energy factorisation, etc