

Supported in part by

-

Latest UPC results from STAR

Wangmei Zha for the STAR Collaboration University of Science and Technology of China

Diffraction and Low-x 2024 8-14 Sept 2024, Hotel Tonnara Trabia, Palermo, Sici

The giant electromagnetic field in heavy-ion collisions

Clouds of quasi-real photons being present with heavy nuclei

$$n(\omega, r_{\perp}) = \frac{4Z^{2}\alpha}{\omega} \left| \int \frac{\vec{q}_{\perp}}{(2\pi)^{2}} \vec{q}_{\perp} \frac{f(\vec{q})}{q^{2}} e^{i\vec{q}_{\perp} \cdot \vec{r}_{\perp}} \right|^{2}$$
 Equivalent Photon
$$\vec{q} = \left(\vec{q}_{\perp}, \frac{\omega}{\gamma}\right)$$
 Approximation

The collisions of the electromagnetic field

Electromagnetic interaction

interactions

interactions

PRC 89 (2014) 014906

The abundant photon induced reactions

UPC related physics П The physics of photoproduction

collider		RHIC	RHIC	LHC
species		Au+Au	U+U	Pb+Pb
$\sqrt{s_{NN}}$	GeV	200	192.8	5520
BFPP	b	117	329	272
single EMD	b	94.15	150.1	215
$mutual \ EMD$	b	3.79	7.59	6.2
nuclear	b	7.31	8.2	7.9
total	b	218.46	487.3	494.9

The equipment (STAR) to photograph the collisions

The observation of Breit-Wheeler process

The Simplest process to convert energy to matter $\gamma + \gamma \rightarrow e^+ + e^-$

The observation of Breit-Wheeler process

STAR, PRL 127 (2021) 052302

1934 Breit & Wheeler : "Collision of two Light Quanta" Physical Review **46** (1934): 1087

The linear polarization and Birefringence

Birefringence

The photons are linearly polarized!

QED Vacuum Birefringence

C. Li, J. Zhou, Y.-j. Zhou, Phys. Lett. B 795, 576 (2019)

 $\Delta \sigma = \sigma_{\parallel} - \sigma_{\perp} \text{ leads to } \cos n\phi$ modulation for polarized two gamma fusion

$$\Delta \phi = \Delta \phi[(e^+ + e^-), (e^+ - e^-)]$$

$$\approx \Delta \phi[(e^+ + e^-), e^+]$$

STAR, PRL 127 (2021) 052302

The first observation of angular modulation for B-W process in heavyion collisions.

The B-W production in isobaric collisions

	$\left A_{4\Delta\phi}\right \left(\%\right)$	$ A_{2\Delta\phi} (\%)$	χ^2/ndf
Isobar(60-80%)	47 <u>±</u> 14	6±13	18/17
Au+Au(60-80%)	27±6	6 <u>+</u> 6	10/17
Au+Au (UPC)	17 <u>±</u> 3	2±2	19/16

- Stronger modulation strength In comparison with Au+Au case Impact parameter dependence
- ✓ Zero $\cos 2\Delta \phi$ modulation < $\cos 2\Delta \phi$ > ∝ m^2/p_{\perp}^2

How about massive muon?

The dimuon channel

- Observation of dimuon excess from photoproduction
- Consistent with impact parameter dependence picture

- ✓ Evidence of the 4th-order azimuthal angular modulation
- ✓ First indication of the 2nd-order azimuthal angular modulation

 $<\cos 2\Delta\phi>\propto m^2/p_{\perp}^2$

Linear polarization and double-slit interference

PRD 103 (2021), 033007

Linearly polarized photons

Decay along the impact parameter

$$\frac{d^2 N}{d\cos\theta d\phi} = \frac{3}{8\pi} \sin^2\theta [1 + \cos 2(\phi - \Phi)]$$

Diffraction and Low-x 2024 - Wangmei Zha

The second

order

modulation

Linear polarization and double-slit interference

STAR, Sci. Adv. 9 (2023) eabq3903

Β

 $2 \langle \cos(2\phi) \rangle$

0.2

0

0.05

Example of EPR paradox

Figure from Zhangbu

The lifetime ρ : ~1fm/c

b ~20fm

[1] Xing, H et.al. J. High Ener. Phys. 2020, 64 (2020).
[2] Zha, W., JDB, Ruan, L. & Tang, Z. Phys. Rev. D 103, 033007 (2021)

STAR Signal $\pi^+\pi^-$ pairs vs. Models

0.1

∔ Au+Au √s_{NN}=200 GeV

Model I: R=6.38 fm, a=0.535 fm

Model II: R=6.9 fm, a=0.535 fm

0.15

0.2

 P_{T} (GeV)

Prediction for U? Second peak?

Sensitive to the nuclear geometry / gluon distribution

0.25

Spin-interference for J/ψ photoproduction

J. D. Brandenburg etal., Phys. Rev. D 106 (2022) 074008

The negative modulation Decay daughters, l⁺l⁻ are fermions

Internal Photon Radiation Effect

Spin-interference for J/ψ photoproduction

Complex analysis of multiple factors

- Background from gamma+gamma
- Soft photon radiation
- □ Bremsstrahlung & detector effect
- Hint of spin interference of J/ψ
 photoproduction
- New techniques for multidimensional imaging of nuclei

Spin-interference for J/ψ photoproduction

Diffraction and Low-x 2024 - Wangmei Zha

• Observation of Breit-Wheeler process in HIC

- The linearly polarized photons in HIC
 -Angular modulation for B-W process --- link to Vacuum Birefringence
 -Double-slit interference in polarization space for photoproduction
- The application of linearly polarization
 -Gluon tomography in nuclei
 -Nuclear charge distribution
 -Probe of QGP

