

COLLECTIVITY IN ULTRA-PERIPHERAL COLLISIONS AND EFA

SEPTEMBER 12, 2024

BJÖRN SCHENKE, BROOKHAVEN NATIONAL LABORATORY DIFFRACTION AND LOW-X 2024, PALERMO, SICILY

COLLECTIVITY IN SMALL SYSTEMS

Collectivity: "More is different" - Macroscopic volumes of matter manifest qualitatively new phenomena In heavy ion collisions (and smaller systems) that includes long range rapidity correlations with characteristic azimuthal angle dependencies

2-PARTICLE CORRELATIONS AS FUNCTION OF RAPIDITY AND ANGULAR DIFFERENCES: $\Delta \eta$ AND $\Delta \phi$

BJÖRN SCHENKE

ORIGINS OF COLLECTIVITY

1) Final state effects:

Particles acquire momentum space correlations via final state interactions (conversion of spatial structure into momentum correlations e.g. via hydrodynamic flow)

2) Initial state correlations: Particles are produced with their momentum space correlations present

00000 D 000000 P 00000 Q 00000000

COLLECTIVITY IN SMALL SYSTEMS

NUMBER OF PRODUCED PARTICLES

Anisotropic flow in heavy ion collisions is driven by final state response to the initial geometry

There is evidence that the same is true in high multiplicity small systems

B. Schenke, C. Shen, P. Tribedy, Phys.Rev.C 102 (2020) 044905 ALICE Collaboration, Phys.Rev.Lett. 123 (2019) 142301

ULTRAPERIPHERAL COLLISIONS

ATLAS Collaboration, Phys. Rev. C 104, 014903 (2021)

- Long range two-particle correlations were observed in photo-nuclear processes in Pb+Pb UPCs at LHC
- Magnitudes of v_n comparable to those in p+Pb collisions

Y. Shi, L. Wang, S. Y. Wei, B. W. Xiao and L. Zheng, Phys. Rev. D 103, 054017 (2021)

MODELING THE INCOMING PHOTON

CGCCALCULATION Y. Shi, L. Wang, S. Y. Wei, B. W. Xiao and L. Zheng, Phys. Rev. D 103, 054017 (2021)

photon as a hadron with a lifetime longer than the time of interaction

- B_p : spread of partons in transverse coordinate space
- Δ : typical transverse momentum of the parton

Use dilute-dense picture:

- •Much higher parton density in the target (Pb) than in the projectile (γ^*) •Multiple scattering of projectile partons with the dense target gluon fields: Wilson line $U(x_1)$ in the eikonal approximation

- Compute azimuthal angular correlation in $\gamma^* + A$ collisions by treating the virtual
- Distribution of partons inside the photon: $w(x, b_{\perp}, k_{\perp}) = f_{p/\gamma}(x) \frac{1}{\pi^2} e^{-b_{\perp}^2/B_p k_{\perp}^2/\Delta^2}$

CGC CALCULATION

Y. Shi, L. Wang, S. Y. Wei, B. W. Xiao and L. Zheng, Phys. Rev. D 103, 054017 (2021)

Production of two initially un-correlated quarks in the dense gluon background:

$$\frac{dN}{d^2k_{1\perp}d^2k_{2\perp}} = \int_{b_1, b_2, r_1, r_2} e^{i(k_1r_1 + k_2r_2)} w_1 w_2 \left\langle D\left(b_1 + \frac{r_1}{2}, b_1 - \frac{r_1}{2}\right) D\left(b_2 + \frac{r_2}{2}, b_2 - \frac{r_2}{2}\right) \right\rangle$$

quark position in the complex conjugate amplitude

where
$$D(x_{\perp}, y_{\perp}) = \frac{1}{N_c} \text{Tr}[U(x_{\perp})U^{\dagger}(y_{\perp})]$$

quark position in the amplitude

technically, this is good for forward direction, where the quarks are going

BJÖRN SCHENKE

DN Rev. D 103, 054017 (2021)

 $\langle \cdots \rangle$: average over dense gluon fields

CGCCALCULATION Y. Shi, L. Wang, S. Y. Wei, B. W. Xiao and L. Zheng, Phys. Rev. D 103, 054017 (2021)

Correlation appears as the higher order N_c corrections in the resulting background average of two dipole amplitudes:

$$\left\langle D\left(b_1 + \frac{r_1}{2}, b_1 - \frac{r_1}{2}\right) D\left(b_2 + \frac{r_2}{2}, b_2 - \frac{r_2}{2}\right) \right\rangle \right|_{\text{up to } \frac{1}{N_c^2}} = e^{-\frac{Q_s^2}{4}(r_1^2 + r_2^2)} \left[1 + \frac{1}{N_c^2}Q(r_1, b_1, r_2, b_2) + \frac{Q(r_1, b_1, r_2, b_2)}{Q(r_1, b_1, r_2, b_2)}\right] = e^{-\frac{Q_s^2}{4}(r_1^2 + r_2^2)} \left[1 + \frac{1}{N_c^2}Q(r_1, b_1, r_2, b_2) + \frac{Q(r_1, b_1, r_2, b_2)}{Q(r_1, b_1, r_2, b_2)}\right]$$

Compute Q in GBW approximation.

BJÖRN SCHENKE

Multiparticle spectra and correlations in high energy $\gamma^* + A$ collisions can be obtained from the Fourier transform of above dipole amplitudes as in p+A

UPC: Q ~30 MeV $\ll \Lambda_{\rm QCD}$ However, the extent of the QCD fluctuation usually does not exceed the size $1/\Lambda_{\rm QCD}$ due to color confinement, so $B_p = 25 \, {\rm GeV}^{-2}$

$$w(x, b_{\perp}, k_{\perp}) = f_{p/\gamma}(x) \frac{1}{\pi^2} e^{-b_{\perp}^2/B_p - k_{\perp}^2/\Delta^2}$$

CGC UPDATE: "A MORE REALISTIC CALCULATION"

H. Duan, A. Kovner, V. V. Skokov, JHEP 12 (2022) 077

- Previous study considered forward (projectile going) production
- •Measurement is done at mid-rapidity
- •This new calculation dresses valence partons in the projectile: Accounts for correlations in projectile and target

- •Address uncertainty from wave function of the nearly real photon by studying two models: dilute quark-antiquark dipole approximation and the vector meson
- •Cannot go to the large N_c limit as correlations of interest are N_c suppressed. Instead, use factorized dipole approximation (FDA) that works when $Q_{
 m c}^2 S_{
 m L} \gg 1$

NUMERICAL RESULTS H. Duan, A. Kovner, V. V. Skokov, JHEP 12 (2022) 077

•Additional correlations from Bose enhancement in the projectile, HBT effect •Previous calculation's v_2 keeps rising with p_T . Here, turnover comes from the dominance of a narrow gluon HBT peak. This also leads to p_T -bin dependence

MOMENTUM BIN DEPENDENCE

H. Duan, A. Kovner, V. V. Skokov, JHEP 12 (2022) 077

•CGC results lead to fast decorrelation in p_T , i.e., v_2 drops quickly when p_T of the trigger differs from p_T of the associate particle

Experiment defines $v_n(p_T^a) = v_{n,n}(p_T^a)$, coefficients in the expansion of the two-particle distribution $\frac{dN}{d\vec{q}_1^2 d\vec{q}_2^2} \propto 1 + 2\sum_{n,n} v_{n,n} \cos(n\Delta\phi)$

- smeared out
- •Different in the final state picture, as we will see

BJÖRN SCHENKE

$$(p_T^b)/\sqrt{v_{n,n}(p_T^b, p_T^b)}$$
 where $v_{n,n}$ are Fourier

•When binning both particle like in the experiment, that fast decorrelation is

BINNING BOTH TRIGGER AND ASSOCIATE PARTICL

H. Duan, A. Kovner, V. V. Skokov, JHEP 12 (2022) 077

POTENTIAL PROBLEMS

PHENIX Collaboration, Nature Phys. 15, no.3, 214-220 (2019) B. Schenke, S. Schlichting, R. Venugopalan, Phys.Lett.B 747 (2015) 76-82, 1502.01331

systematics right (here the system dependence at RHIC):

- M. Mace, V. V. Skokov, P. Tribedy, R. Venugopalan, Phys. Rev. Lett. 121, 052301 (2018), PRL123, 039901(E) (2019)
- Initial state momentum anisotropy from the Color Glass Condensate cannot get all

FINAL STATE DESCRIPTION

C. Shen and B. Schenke, Phys.Rev. C97 (2018) 024907; Phys. Rev. C 105, 064905 (2022)

BJÖRN SCHENKE

- Simulate small systems dynamically with 3+1D hydrodynamics
- Initialize using MC-Glauber + string deceleration model with source terms in hydro
- Provides fluctuating transverse+longitudinal geometry

The (3+1)D hybrid model captures the rapidity and centrality dependence of $dN^{\rm ch}/d\eta$ for all asymmetric systems

BJÖRN SCHENKE

ANISOTROPIC FLOW VS RAPIDITY W. Zhao, S. Ryu, C. Shen and B. Schenke, Phys.Rev.C 107 (2023) 1, 014904

0.08 3DGlauber+MUSIC+UrQMD PHENIX data -3.9<n^{Ref.}<-3.1 0.06 p-Au@ 200 GeV <pre 0-5% ТЩ 翈 0.02 (a) 2

- Pseudo-rapidity dependence of $v_2\{EP\}$ reproduced in d+Au and ³He+Au
- The elliptic flow in $\eta < 1$ in p+Au collisions is underestimated because of the strong longitudinal flow decorrelation in our model + potential non-flow

INITIAL STATE FOR γ^* + Pb

W. Zhao, C. Shen and B. Schenke, Phys.Rev.Lett. 129 (2022) 25, 252302

- Same model as used in collision systems discussed so far
- Virtual photon described as a vector meson: two quarks plus soft cloud
- Energy of the incoming quasi-real photon fluctuates event by event
- Leads to fluctuations of $\sqrt{S_{\gamma*N}}$ and the center of mass rapidity

PARTICLE PRODUCTION AND FLOW IN p+A AND γ^* +A

W. Zhao, C. Shen and B. Schenke, Phys.Rev.Lett. 129 (2022) 25, 252302

- Shapes of $dN_{ch}/d\eta$ reproduced for p+Pb and γ^* +Pb collisions
- by different amount of longitudinal flow decorrelation Experimental data: ATLAS Collaboration, Phys. Rev. C 104, 014903 (2021) **BJÖRN SCHENKE**

Elliptic flow difference between p+Pb and γ^* +Pb collisions reproduced - driven

Experimental data: ATLAS Collaboration, Phys. Rev. C 104, 014903 (2021)

BJÖRN SCHENKE

As expected from factorization in hydrodynamics (two-particle azimuthal harmonic $v_{2,2}$ is ~ a product of single particle azimuthal anisotropies) no significant dependence on the p_T range of the reference particles

DISTINGUISH MODELS IN e+A COLLISIONS AT EIC

W. Zhao, C. Shen and B. Schenke, Phys.Rev.Lett. 129 (2022) 25, 252302 Y. Shi, L. Wang, S. Y. Wei, B. W. Xiao and L. Zheng, Phys. Rev. D 103, 054017 (2021)

- Hydro: Larger B^2 means larger transverse area for geometry to fluctuate $v_2 \propto B^2$

• CGC: Larger B^2 leads to a larger number of independent color domains $v_2 \propto 1/B^2$

SUMMARY

- Light ion collisions and even γ +ion collisions show signs of collectivity
- Both initial state correlations and final state effects could contribute
- Described by a) Color Glass Condensate and b) Hydrodynamics
- CGC alone has trouble describing systematics in other small systems
- Final state models are challenged by how small the system is (applicability of hydrodynamics)
- Q^2 dependence at the EIC will shed more light on origin of signals

BACKUP

BJÖRN SCHENKE

FACTORIZED DIPOLE APPROXIMATION H. Duan, A. Kovner, V. V. Skokov, JHEP 12 (2022) 077

- Find leading contributions: area S_1 enhanced contributions $Q_s^2 S_\perp \gg 1$
- A. Kovner, A. Rezaeian, Phys.Rev.D 96 (2017) 7, 074018
- If $\langle U_{ab} \rangle \neq 0$ an integral like the one on the right could maximally go as S_{\perp}^4
- But for dense target $\langle U_{ab} \rangle = 0$ and one needs nonzero contributions from $\langle U_{\vec{x}}^{ab}U_{\vec{v}}^{cd}\rangle$, which is the case for the smallest color singlets
- $\langle U_{\vec{x}}^{ab}U_{\vec{v}}^{cd}\rangle$ for $|\vec{x}-\vec{y}| > Q_s^{-1}$ is negligible due to color neutralization
- This reduces the largest power of S_{\perp} to S_{\perp}^2
- If singlet state has more than 2 partons, one loses another power of S_{\perp} for each

$$\begin{split} &\int \prod_{i=1}^{4} d^{2} \boldsymbol{x}_{i} f(\boldsymbol{x}_{1}, \dots, \boldsymbol{x}_{4}) \langle \operatorname{tr}[U_{\boldsymbol{x}_{1}} U_{\boldsymbol{x}_{2}} U_{\boldsymbol{x}_{3}} U_{\boldsymbol{x}_{4}}] \rangle \\ &= \int \prod_{i=1}^{4} d^{2} \boldsymbol{x}_{i} f(\boldsymbol{x}_{1}, \dots, \boldsymbol{x}_{4}) \Big[\langle U_{\boldsymbol{x}_{1}}^{ab} U_{\boldsymbol{x}_{2}}^{bc} \rangle \langle U_{\boldsymbol{x}_{3}}^{cd} U_{\boldsymbol{x}_{4}}^{da} \rangle \\ &+ \langle U_{\boldsymbol{x}_{4}}^{da} U_{\boldsymbol{x}_{1}}^{ab} \rangle \langle U_{\boldsymbol{x}_{2}}^{bc} U_{\boldsymbol{x}_{3}}^{cd} \rangle + \langle U_{\boldsymbol{x}_{1}}^{ab} U_{\boldsymbol{x}_{3}}^{cd} \rangle \langle U_{\boldsymbol{x}_{2}}^{bc} U_{\boldsymbol{x}_{4}}^{da} \rangle \Big] + \mathcal{O} \end{split}$$

• So, the leading result can be expressed just using dipoles:

$$\left\langle U_{\vec{x}}^{ab}U_{\vec{y}}^{cd}\right\rangle = \frac{1}{N_c^2 - 1} \delta_{ab} \delta_{cd} D(\vec{x}, \vec{y})$$

INITIAL STATE FOR γ^* + Pb

W. Zhao, C. Shen and B. Schenke, Phys.Rev.Lett. 129 (2022) 25, 252302

- Same model as used in collision systems discussed so far
- Virtual photon described as a vector meson: two quarks plus soft cloud

nucleon

vector meson

COLLISION KINMATICS FOR γ^* + Pb • Energy of the incoming quasi-real photon fluctuates event by event:

 $w_R^{AA} = 2k_{\gamma}R_A/\gamma_L$ with $\gamma_L = \sqrt{s_{\rm NN}}/(2m_N)$

 Center of mass collision energy for the $\gamma^* + A$ system fluctuates

$$\sqrt{s_{\gamma N}} = (2k_{\gamma}\sqrt{s_{\rm NN}})^{1/2}$$

• Center of mass rapidity of $\gamma^* + A$ collision fluctuates in the lab frame

 $\Delta y = y_{\text{beam}}(\sqrt{s_{\gamma N}}) - y_{\text{beam}}(\sqrt{s_{\text{NN}}})$

A. J. Baltz et al. Phys. Rept. 458, 1-171 (2008); W. Zhao, C. Shen and B. Schenke, Phys. Rev. Lett. 129 (2022) 25, 252302

RAPIDITY DEPENDENCE OF INITIAL ANISOTROPY

B.Schenke, S. Schlichting, and Pragya Singh, Phys.Rev.D 105 (2022) 9, 094023

CGC based IP-Glasma + rapidity evolution (JIMWLK)

$$C_{\mathcal{O}}^{N}(\eta_{1},\eta_{2}) = \frac{\left\langle \operatorname{Re}\left(\mathcal{O}(\eta_{1})\mathcal{O}^{*}(\eta_{2})\right)\right\rangle}{\sqrt{\left\langle \left|\mathcal{O}(\eta_{1})\right|^{2}\right\rangle \left\langle \left|\mathcal{O}(\eta_{2})\right|^{2}\right\rangle}}$$

C_v2(∆y)

Initial momentum anisotropy decorrelates quickly with rapidity difference

further evidence: Observed Baryon/meson v_2 grouping and splitting (see You Zhou's talk) Strong final state interactions needed to describe data

BJÖRN SCHENKE

RAPIDITY DEPENDENCE OF GEOMETRY

B.Schenke, S. Schlichting, and Pragya Singh, Phys.Rev.D 105 (2022) 9, 094023

The geometry, quantified here with ε_2 and ε_3 , decorrelates slowly

FLOW VECTOR DECORRELATION

W. Zhao, S. Ryu, C. Shen and B. Schenke, Phys.Rev.C 107 (2023) 1, 014904

- Elliptic flow vectors in (d, ³He)+Au are strongly correlated over wide range in η lacksquare
- Decorrelation is much stronger in the smaller p+Au system
- Decorrelations of v_3 flow vectors are much stronger than v_2 : Hierarchy between v_n driven by decorrelation in this model, not only the hierarchy of eccentricities **BJÖRN SCHENKE**

DIFFERENT RAPIDITY BINS, DIFFERENT RESULTS

W. Zhao, S. Ryu, C. Shen and B. Schenke, Phys.Rev.C 107 (2023) 1, 014904

Tune to ³He+Au; PHENIX $v_n(p_T)$ in (d, ³He)+Au collisions well described - Longitudinal flow decorrelations lead to larger $v_3(p_T)$ for STAR, explaining "50% of the difference between the two measurements

BJÖRN SCHENKE

PHENIX:
(p, d)+Au:
$$\eta_1 \in [-3.9, -\eta_2 \in [-0.35, 0]$$

³He+Au: $\eta_1 \in [-3, -1], \eta_2 \in [-0.35, 0.3]$
STAR:
 $\eta \in [-0.9, 0.9]$ with $|\Delta \eta|$

3.1],).35] 35] > 1

- Predictions for the net proton rapidity and centrality dependence at **RHIC BES energies**
- Our results at mid-rapidity are consistent with the STAR measurements
- Measurements of the rapidity dependence can further constrain the distributions of initial baryon charges

PHENIX 3X2PC STUDY W. Zhao, S. Ryu, C. Shen and B. Schenke, Phys.Rev.C 107 (2023) 1, 014904

BJÖRN SCHENKE

DIFFERENTIAL v_2 **IN UPC Pb+Pb**

BJÖRN SCHENKE

MEAN p_T **IN UPC Pb+Pb**

DECORRELATION IN UPC

