Electroweak and BSM prospects with ePIC

Michael Nycz University of Virginia

Diffraction and Low-*x* 2024 Palermo Italy, September 8 -14 2024

Electron-Ion Collider Physics

"The Electron-Ion Collider (EIC) will address some of the most fundamental questions in science regarding the visible world, including"

Origin of nucleon spin

How are quark & gluons distributed in momentum and space

What are the emergent properties of dense system of gluons

Electron-Ion Collider

- High luminosity machine
 - > $(10^{33} 10^{34} \text{ cm}^{-2} \text{ s}^{-1})$
- Large center-of-mass energy range
 - > √21-140 GeV
- Polarized e^{-} , protons and light ions beams
 - **≻** ≥70%
- Ions beam from deuteron to heavier nuclei
 - ➢ Gold, lead, or uranium

The ePIC Detector

- → Large η coverage (-3.5 < η < 3.5)
- → High precision silicon detectors for tracking
- → Excellent calorimeters for measuring energy of EM particle showers
- → Extended PID for hadron ID

The ePIC Detector

- → Large η coverage (-3.5 < η < 3.5)
- → High precision silicon detectors for tracking
- → Excellent calorimeters for measuring energy of EM particle showers
- → Extended PID for hadron ID

Electroweak & BSM Physics at the EIC

Primary focus of the EIC

- Answering fundamental questions in QCD
- Beam and detector design synergistic for Electroweak & BSM physics
 - Wide kinematic coverage
 - > High luminosity ~ 1×10^{34}
 - > Polarized e^{-} and protons and light ions beams
- EW & BSM physics prospects at the EIC with ePIC
 - Charged Flavor Lepton Violation (CFLV)
 - Dark photon search
 - > Provide constraints on $\sin^2(\theta_w)$ over a Q^2 range
 - BSM using Transverse Single Spin Asymmetries (TNSSA)

Weak Mixing Angle at the EIC

- Weak mixing angle
 - Parameter of Standard Model
 - Sensitive to BSM physics
- Parity Violating DIS
 - > Extraction of $\sin^2(\theta_w)$ from the isoscalar deuteron
 - Cancelation of structure function effects
- ♦ High precision data at EIC may make extraction of sin²(θ_W) from the proton
 > Will require precise knowledge of PDFs
- Kinematics
 - Energy range between those in fixed-target and collider experiments
 - Over a range of Q² values not yet explored

J Arrington et al 2023 J. Phys. G: Nucl. Part. Phys. 50

Neutral Current Electroweak Physics Studies at the EIC

Parity Violating DIS Outlook

R. Boughezal et al., Neutral-current electroweak physics and SMEFT studies at the EIC, Phys. Rev. D

ep Results

eD Results

Detailed study of the extraction of $\sin^2(\theta_w)$ at the EIC for both the proton and deuteron performed Will cover an energy scale between fixed target and collider experiments *

*

Unexplored region \succ

Charged Lepton Flavor Violation

1.

2.

3.

1 Prong μ channel $\tau \rightarrow \mu \nu_{\mu} \nu_{\tau}$ 106 SM $[C_{LQU}]_{uu}$ 10⁵ $[C_{LOD}]_{bb}$ Larger branching ratio $\sim 17\%$ 10^{4} Suppression of SM background events 10³ Needs (good) μ identification 10² Preliminary 10¹ No dedicated muon detector Limit tracks to those MIPs in 10 20 30 40 \bigcirc p_T^{μ} (GeV) calorimerter *Image courtesy of Emanuele Mereghetti

Utilize E/p in both barrel calorimeters

Charged Lepton Flavor Violation at the EIC

<u>1 Prong</u>

$$\tau \rightarrow \mu \overline{\nu}_{\mu} \nu_{\tau}$$

- 1. Larger branching ratio ~ 17%
- 2. Suppression of SM background
- 3. Needs (good) μ identification

Decay Channel(s)

- Utilized a leptoquark generator (LQGENEP)
 - Signal MC events
- Djangoh and Pythia generators to produce background DIS & photoproduction events
- Large mass of leptoquark
 - Used the 18x275 GeV ep collision
- Critical requirement
 - secondary vertex reconstruction

<u>3 Prong (from $e \rightarrow \tau$)</u> $\tau \rightarrow \pi^{-}\pi^{+}\pi^{-}\nu_{-}$

1. Identification is easier than 1 prong channel

- 1. Primary vertex reconstructed
- 2. $\Sigma_{\rm h}(E-p_z)$ >18 GeV
- 3. Müssing p_{T} : (1< p_{T} <9) GeV
- 4. 3π candidate
- 5. $p_{\tau} \text{ of } 3\pi < 3 \text{ GeV}$
- 6. No scattered e^{-} detected

Decay Channel(s)

- Utilized a leptoquark generator (LQGENEP)
 - Signal MC events
- Djangoh and Pythia generators to produce background DIS & photoproduction events
- Large mass of leptoquark
 - Used the 18x275 GeV ep collision
- Critical requirement
 - secondary vertex reconstruction

 $\frac{3 \operatorname{Prong} (\operatorname{from} e \to \tau)}{\tau \to \pi^{-} \pi^{+} \pi^{-} v_{\tau}}$

1. Identification is easier than 1 prong channel

14

- 3 Prong study completed
 - J. Zhang et. al, Charged Lepton Flavor Violation Study at the EIC, in Electroweak and BSM physics at the EIC
- I Prong study: ongoing
- Refine & add additional constraints / cuts
 - Shower shape
 - > p_{T} imbalance from missing neutrinos (v)
 - \succ Large hadronic Jet p_T

Sensitivity for leptoquark cross section vs backgroun events

Transverse Single Spin Asymmetries (DIS)

- 1. e^{-} polarized \perp to scattering plane (unpolarized target)
- 2. Unpolarized e^{-} and transversely polarized target

$$\frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}}$$

- Zero at Born level
- Two-photon exchange can lead to non-zero asymmetry

 $A_n = \frac{\alpha_{\rm EM} m_l \left| \vec{S}_T \right| \sin(\varphi_s)}{2Q} \frac{y^2 \sqrt{1-y}}{1-y+\frac{1}{2}y^2} \frac{\sum_q e_q^3 q(x)}{\sum_q e_q^2 q(x)}$

 $A_n \propto \frac{m_e \alpha}{\Omega}$

Leading Twist

Transverse Single Spin Asymmetries

R. Boughezal, D. de Florian, F. Petriello, and W. Vogelsang, Transverse spin asymmetries at the EIC as a probe of anomalous electric and magnetic dipole moments, Phys. Rev. D 107, 075028 (2023)

SMEFT: an effective field theory extension of the SM that includes terms suppressed by a high energy scale Λ

*Precision compared to size of asymmetry needs further evaluation 18

Summary and Outlook

- → There are many interesting Electroweak and BSM physics topics to explore for the future EIC!
- → Completed and ongoing impact studies with ePIC
 - <u>R. Boughezal et al., Neutral-current electroweak physics and SMEFT studies at the EIC, Phys.</u> <u>Rev. D</u>
 - J. Zhang et. al, Charged Lepton Flavor Violation Study at the EIC, in Electroweak and BSM physics at the EIC
 - R. Boughezal, D. de Florian, F. Petriello, and W. Vogelsang, Transverse spin asymmetries at the EIC as a probe of anomalous electric and magnetic dipole moments, Phys. Rev. D 107, 075028 (2023)
 - 1 prong study of CLFV Andrew Hurley (UMass Amherst)
- → Future work
 - Dark photons, 1 prong study of CLFV, precision of SMEFT indued asymmetry, etc....
- → Interested in Electroweak & BSM physics at the EIC
 - Electroweak & BSM working group (Ciprian Gal and Juliette Mammei)
 - eic-projdet-inclusive-l@lists.bnl.gov & eic-projdet-bsmew-l@lists.bnl.gov

ep Results

eD Results

Beam type and energy	$ep \ 5 \times 100$	$ep \ 10 \times 100$	$ep \ 10 \times 275$	$ep \ 18 \times 275$	$ep \ 18 \times 275$
Label	P2	P3	P4	P5	P6
Luminosity (fb^{-1})	36.8	44.8	100	15.4	(100 YR ref)
$\langle Q^2 \rangle ~({ m GeV}^2)$	154.4	308.1	687.3	1055.1	1055.1
$\langle A_{PV} \rangle \ (P_e = 0.8)$	-0.00854	-0.01617	-0.03254	-0.04594	-0.04594
$(dA/A)_{stat}$	1.54%	0.98%	0.40%	0.80%	(0.31%)
$(dA/A)_{\text{stat+syst(bg)}}$	1.55%	1.00%	0.43%	0.81%	(0.35%)
$(dA/A)_{1\%pol}$	1.0%	1.0%	1.0%	1.0%	(1.0%)
$(\mathrm{d}A/A)_\mathrm{tot}$	1.84%	1.42%	1.09%	1.29%	(1.06%)
Experimental		6			
$d(\sin^2 \theta_W)_{\text{stat+syst(bg)}}$	0.002032	0.001299	0.000597	0.001176	0.000516
$d(\sin^2 \theta_W)_{\rm stat+syst+pol}$	0.002342	0.001759	0.001297	0.001769	0.001244
with PDF					
$d(\sin^2 \theta_W)_{tot,CT18NLO}$	0.002388	0.001807	0.001363	0.001823	0.001320
$d(\sin^2 \theta_W)_{tot,MMHT2014}$	0.002353	0.001771	0.001319	0.001781	0.001270
$d(\sin^2 \theta_W)_{tot,NNPDF31}$	0.002351	0.001789	0.001313	0.001801	0.001308

Beam type and energy	$eD 5 \times 100$	$eD \ 10 \times 100$	$eD \ 10 \times 137$	$eD \ 18 \times 137$	$eD \ 18 \times 137$
Label	D2	D3	D4	D5	N/A
Luminosity (fb^{-1})	36.8	44.8	100	15.4	(10 YR ref)
$\langle Q^2 \rangle ~({ m GeV}^2)$	160.0	316.9	403.5	687.2	687.2
$\langle A_{PV} \rangle \ (P_e = 0.8)$	-0.01028	-0.01923	-0.02366	-0.03719	-0.03719
$(\mathrm{d}A/A)_\mathrm{stat}$	1.46%	0.93%	0.54%	1.05%	(1.31%)
$(\mathrm{d}A/A)_\mathrm{stat+bg}$	1.47%	0.95%	0.56%	1.07%	(1.32%)
$(\mathrm{d}A/A)_{\mathrm{syst},1\%\mathrm{pol}}$	1.0%	1.0%	1.0%	1.0%	(1.0%)
$(\mathrm{d}A/A)_\mathrm{tot}$	1.78%	1.38%	1.15%	1.46%	(1.66%)
Experimental					
$d(\sin^2 \theta_W)_{ m stat+bg}$	0.002148	0.001359	0.000823	0.001591	0.001963
$d(\sin^2 \theta_W)_{\rm stat+bg+pol}$	0.002515	0.001904	0.001544	0.002116	0.002414
with PDF	5				
$d(\sin^2 \theta_W)_{tot,CT18}$	0.002558	0.001936	0.001566	0.002173	0.00247
$d(\sin^2 \theta_W)_{tot,MMHT2014}$	0.002527	0.001917	0.001562	0.002128	0.002424
$\mathrm{d}(\sin^2 heta_W)_{\mathrm{tot,NNPDF31}}$	0.002526	0.001915	0.001560	0.002127	0.002423