Collectivity probes in small systems and photoproduction studies at the LHC

Dr. Javier Murillo

Universidad de Sonora

Diffraction and Low-x 2024

Palermo, Sicily Sep 8-14, 2024

(中) (종) (종) (종) (종) (종)

1 Intact proton / nuclei

2 Collectivity in diffractive processes within pPb collisions

3 Intrajet collectivity and soft QCD tunes

4 Summary and outlook

Intact proton / nuclei

3

Intact protons or nuclei; photo/pomeron-induced processes

• Ultra ($b \ge 2R_A$)/periperal collisions with large impact parameters;

Semiexclusive: $\rightarrow \gamma/\mathbb{P}\text{-proton/Pb}$

Exclusive: $\rightarrow \gamma \gamma$, γ -P, P-P in initial state

 \rightarrow Photon/pomeron source (Pb or p) does not dissociate

https://doi.org/10.1063/PT.3.3727

javier.murillo@cern.ch

э

< □ > < □ > < □ > < □ > < □ > < □ >

- ► factorized into pomeron flux and pomeron structure function (Ingelman–Schlein model) $\rightarrow F_2^{D(3)}(x_{\mathbb{P}}, \beta, Q^2) = f_{\mathbb{P}/p}(x_{\mathbb{P}})F_2^{\mathbb{P}}(\beta, Q^2)$
- Pythia8 options; SigmaDiffractive:PomFlux, PDF:PomSet combinations
 - \rightarrow **Default**; PomSet = 6, PomFlux = 1
 - \rightarrow H1 fit A; PomSet = 3, PomFlux = 6
 - \rightarrow H1 fit B; PomSet = 6, PomFlux = 7
 - \rightarrow Alternative from H1; (PomFlux = 8)

G.Ingelman and P. Schlein, Phys. Lett. B152 (1985) 256

< ロト < 同ト < ヨト < ヨト

► Pomeron energy fraction with respect proton energy (6.5 TeV)

 \rightarrow So far same reach between different PDFs, average \sim 0.043

Photon flux; Equivalent Photon Approximation

- Equivalent Photon Approximation (EPA)^{1,2}; cross-section can be factorized in terms of equivalent flux of photons with energy E_γ into colliding hadron
- ► Flux of quasireal photons, with intensity proportional to the square of its electric charge, Z²
 - \rightarrow Weizsäcker Williams power-law photon flux
 - \rightarrow Proton flux: further corrections proposed: Nucl. Phys. B 974, 115645 (2022)

Photon flux; Effective couplings [preliminary, work in progress]

- A. Bouzas, A. Cota, J. Murillo
- ▶ FeynRules were used to add intact proton 'p_{ntct}' to the SM in MG5

EPA

SMd6pntct_v05

A. B., F. Larios, Phys. Rev. D 105 (2022) 115002

Photon flux; comparison with EPA [preliminary, work in progress]

- A. Bouzas, A. Cota, J. Murillo
- ▶ So far consistency between EPA and QED tree level

Collectivity in diffractive processes within pPb collisions

æ

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Quark gluon plasma (QGP) and collectivity

- Medium properties and hydrodynamic behavior \rightarrow Look into smaller systems

- Initial and final state effects
 - Long range correlations induced by color fluctuations? (CGC)
 - gluon saturation in the initial state?

https://cds.cern.ch/record/2025215 D. Gangadharan, QM2022

Unexpected signs of collectivity seen in pp and pPb at the LHC

- ► Too small and simple to develop QGP-like collective behaviour? → Minimal size and conditions for collectivity to emerge
- ▶ Initial (CGC) effective model or Final (QGP) state effect?
 - how small the interaction region can be until description of soft QCD breaks down?

Recent collectivity probes with small systems

- $e^+e^- \rightarrow ALEPH (91 \text{ GeV}, 208 \text{ GeV}) \text{ and } Belle (10.52 \text{ GeV})$
- ep \rightarrow ZEUS and H1 at HERA (318 GeV)
- $|\gamma|$
- \rightarrow ZEUS (318 GeV [ep]) (JHEP 12 (2021) 102)
- → CMS (8.16 TeV [pPb]) (PLB 844 (2023) 137905)
- ▶ **PPb** \rightarrow CMS (8.16 TeV [pPb])
- ► γPb \rightarrow ATLAS (5.02 TeV [PbPb])

Limited multiplicity of charged particles in small systems

Pomeron-Lead interactions; Pythia8 with Angantyr model

- ► Ongoing colaboration with Ilkka Helenius (Pythia8)
- ► Pythia8 with Angantyr model

J. High Energ. Phys. (2018) 2018: 134

< □ > < □ > < □ > < □ > < □ > < □ >

Pomeron-Lead interactions; within pPb collisions

- Pythia8 with Angantyr model and different pomeron density variations
 - \rightarrow Intact proton case
- ▶ Presence of rapidity gap on the p-going side
 - Activation of forward detectors on lead nucleus side and no activity on opposite side

h

Forward enhanced pPb data $N_{\rm trk}$ and $\Delta \eta^F$ dependence

► CMS-HIN-22-004, pPb data at 8.16 TeV

\rightarrow proton at 6.5 TeV

Comparison with Pythia8 model combining all diffractive contributions + ND

Cross-section limits on HIN-18-019

Returning to Pomeron-Lead interactions; produced charged particles

- **>** Pythia8 with Angantyr model \rightarrow **P** density effect over $N_{\sf trk}$ and η
- N_{trk} and η in agreement so far for Default settings and H1 B Fit
 - With difference with H1 A Fit at highest multiplicities
 - Stronger assymmetry in η distribution for H1 B Fit

Pomeron-Lead interactions; Large rapidity gap

- ► Pythia8 with Angantyr model
 - $p_{\rm T}$ and $\Delta \eta^F$
- ▶ Indeed P-Pb interaction leads to an empty side reflecting in a large $\Delta \eta^F$

Two-dimensional (2D) angular correlation distribution

$$\frac{1}{N_{trig}}\frac{d^2N^{pair}}{d\Delta\eta d\Delta\phi} = B(0,0)\frac{S(\Delta\eta,\Delta\phi)}{B(\Delta\eta,\Delta\phi)}$$

 $\frac{B(0,0)}{B(\Delta\eta,\Delta\phi)}$ is the pair acceptance correction to the signal distribution

 \rightarrow Correction for tracking inefficiency is applied to each charged particle

Signal pair distribution:

Background pair distribution:

Fourier fits from 1D projection to long range $|\Delta \phi| > 2.0$

- Two particle correlations with
 P density + Angantyr
- P-Pb events; PYTHIA8
- $\blacktriangleright~$ 2D correlations are simmetrized around 0 and π
- ► Distributions are fitted over $\Delta \phi$ range $[0, \pi]$ to a Fourier decomposition series $\propto 1 + \sum_{n} 2V_{n\Delta} \cos(n\Delta \phi)$, from where the measured $V_{n\Delta}$ are extracted

 \rightarrow $\rm N_{ch}$ > categories with $\sim \! even$ number of pairs

v_2 anisotropy dependence with N_{trk}

- Pythia8 with Angantyr model
- Fluxes have an impact on $v_2 \pm 10.4\%$
- ► SD and DD show

э

э

Intrajet collectivity and soft QCD tunes

æ

イロト イヨト イヨト イヨト

Intrajet N_{trk}

► Intra jet N_{trk} can be categorised by parton flavor

- High energy jets $p_{\rm T} > 500~\text{GeV}$
- Gluon dominating high multiplicity region
- ► N_{trk} distribution affected by Pythia tune settings

$V_{n\Delta}$ fit results as function of $N_{\rm trk}$

- Data from arXiv:2312.17103 compared with Pythia8 predictions with different tunes
- ▶ So far Monash and QCD CR more in agreement with data than Pythia CP5

Different tunes and frame of reference

- ▶ v₂ anisotropy modeled better by Monash and Pythia CR model
- Change to Winner-Take-All (WTA) model keep rersults consistent with E-Scheme up to N_{trk} ~ 80 where Pythia CR keeps consistent and Pythia CP5 shows the highest variation

- ► Several phenomena in photo-induced and diffractive proccesses yet to be studied
- ▶ Photon flux from QED tree level calculation consistent with EPA modeling
- ▶ Different pomeron density options with pomeron PDF and Flux affect the v₂ measurements

- By $\sim 10\%$

- ▶ Predictions from the PYTHIA8 on intrajet v₂ data measurements with different tunes and frames of reference
 - Monash and QCD CR model in better agreement with Data
 - Measurements do not show significant variation up to $\mathit{N}_{\rm trk}\sim$ 80 after performing measurements in WTA frame
 - Where QCD CR model shows the smallest variation

Thanks

э

イロト 不得下 イヨト イヨト

Backup

æ

► PYTHIA8

- EPA and radial parameters in Nucleus2gamma object
- Exclusive and semiexclusive processes
- Available softQCD processes to simulate MB events within photoproduction

► STARLIGHT

- $\gamma\gamma$ and $\gamma{\rm I\!P}$ interactions between nuclei and protons
- Variety of final states to $\mu^+\mu^-$, $\tau^+\tau^-$, e^+e^- , ρ^0 , J/ ψ , υ ...
- Madgraph
 - EPA flux for proton, with exclusive and semiexclusive production at NLO

► Gamma-UPC

- Exclusive $\gamma\gamma$ processes with variable A number of nucleons and EPA models
 - Improved Weizsaecker-Williams Approx [hep-ph/9310350]
 - Effective W/Z/A Approx [2111.02442]
 - edff [2207.03012]
 - chff [2207.03012]

3

(日)

Photon from Pb nuclei with energy up to \sim 80 GeV

- Photon energies for lead ion at 2.76 TeV and proton at 7 TeV can reach values up to 80 GeV and 2.45 TeV respectively
- Photon energies at LHC, HL-LHC and FCC energies; larger reach for proton flux

System	$\sqrt{s_{_{\rm NN}}}$	$\mathcal{L}_{\mathrm{int}}$	$E_{\text{beam1}} + E_{\text{beam2}}$	$\gamma_{ m L}$	$R_{ m A}$	$E_{\gamma}^{ m max}$	$\sqrt{s_{\gamma\gamma}^{\text{max}}}$
Pb-Pb	5.52 TeV	5 nb^{-1}	2.76 + 2.76 TeV	2960	7.1 fm	80 GeV	160 GeV
Xe-Xe	5.86 TeV	30 nb^{-1}	2.93 + 2.93 TeV	3150	6.1 fm	100 GeV	200 GeV
Kr-Kr	6.46 TeV	120 nb ⁻¹	3.23 + 3.23 TeV	3470	5.1 fm	136 GeV	272 GeV
Ar-Ar	6.3 TeV	1.1 pb ⁻¹	3.15 + 3.15 TeV	3390	4.1 fm	165 GeV	330 GeV
Ca-Ca	7.0 TeV	$0.8 \ pb^{-1}$	3.5 + 3.5 TeV	3760	4.1 fm	165 GeV	330 GeV
0-0	7.0 TeV	12.0 pb ⁻¹	3.5 + 3.5 TeV	3760	3.1 fm	240 GeV	490 GeV
p-Pb	8.8 TeV	1 pb^{-1}	7.0 + 2.76 TeV	7450, 2960	0.7, 7.1 fm	2.45 TeV, 130 GeV	2.6 TeV
р-р	14 TeV	150 fb ⁻¹	7.0 + 7.0 TeV	7450	0.7 fm	2.45 TeV	4.5 TeV
Pb-Pb	39.4 TeV	110 nb ⁻¹	19.7 + 19.7 TeV	21 100	7.1 fm	600 GeV	1.2 TeV
p-Pb	62.8 TeV	29 pb ⁻¹	50. + 19.7 TeV	53 300, 21 100	0.7,7.1 fm	15.2 TeV, 600 GeV	15.8 TeV
p-p	100 TeV	$1 \ ab^{-1}$	50. + 50. TeV	53 300	0.7 fm	15.2 TeV	30.5 TeV

H.-S. Shao and D. d'Enterria, JHEP 2209 (2022) 248 arXiv:2207.03012[hep-ph]

Collectivity and ridge in nuclear collisions AA

Emerges in the two-particle correlation functions

- Long-range spatial correspondence \rightarrow [collective behaviour of final-state particles]
- Observed in large collision systems (AA) $\quad \rightarrow \quad$ [ridge-like shape in data]
- First probes over smaller collision systems (dAu)
- ► Evidence of collectivity and one of the features of QGP; Relativistic fluid dynamics

Collectivity signatures at low proton-proton multiplicity

- \blacktriangleright Significant near-side ridge at very low pp multiplicity \rightarrow Identify emergence mechanisms
 - Down to a range from \sim 8 to 20
 - Compatible with CMS results

Recontres de Moriond QCD 2023, Jasper Parkkila

< □ > < □ > < □ > < □ >

One-dimensional (1D) projection and decomposition

- No ridge so far for γp system in CMS and ZEUS probes
- ► Fitted over the $\Delta \phi$ range $[0, \pi]$ to a Fourier decomposition series $\propto 1 + \sum_{n} 2V_{n\Delta} \cos(n\Delta \phi)$

 $ightarrow \gamma$ p data measurements are consistent with model predictions that have no collective effects

$p_{\rm T}$ range		$2 \le N_{trk}^{offline} < 5$	$5 \le N_{trk}^{offline} < 10$	$10 \le N_{trk}^{offline} < 35$
	$V_{1\Delta}$	-0.086 ± 0.006	-0.075 ± 0.005	-0.074 ± 0.007
$0.3 < p_{\rm T} < 3.0 {\rm GeV/c}$	$V_{2\Delta}$	0.012 ± 0.004	0.015 ± 0.004	0.026 ± 0.006
	$V_{3\Delta}$	-0.002 ± 0.001	-0.002 ± 0.004	-0.010 ± 0.006
		$2 \le N_{trk}^{offline} < 5$	$5 \le N_{tr}^{ol}$	fline < 35
	$V_{1\Delta}$	-0.271 ± 0.021	-0.221	± 0.017
$1.0 < p_{\rm T} < 3.0 {\rm GeV/c}$	$V_{2\Delta}$	0.077 ± 0.027	0.059	± 0.017
	$V_{3\Delta}$	-0.015 ± 0.009	-0.007	2 ± 0.013

javier.murillo@cern.ch

v_2 elliptic anisotropy measurements with $|\eta|>2.0$

- At a given p_T and track multiplicity, v_2 is larger for γp -enhanced events than for MB pPb interactions
 - The magnitudes of both $V_{1\Delta}$ and $V_{2\Delta}(v_2)$ increase with $p_{\rm T}$
 - \rightarrow Similar response to p_T increase seen by ZEUS over $c_2\{2\}$
- Predictions from the PYTHIA8 model describe well the γp data within uncertainties

< ロト < 同ト < ヨト < ヨト

CMS forward detectors in Run 2

- ► Zero Degree (ZDC) and Hadronic Forward (HF) calorimeters for Pb and protons respectively
- ▶ CMS Particle Flow energies to constrain activity as a function of η
- CT-PPS spectrometer for pp runs

javier.murillo@cern.ch

Evidence of Photo-induced processes in PbPb / pp at the LHC

Evidence of light-by-light scattering

CMS-FSQ-16-012 Phys. Lett. B 797 (2019) 134826

- Exclusive production of lepton pairs
 - Scattered protons measured at CMS-TOTEM precision proton spectrometer (CT-PPS)
 - Observed for first time at the LHC in pp collisions at $\sqrt{s}=$ 13 TeV

JHEP07 (2018) 153

- Light-by-light with protons

Photon flux, $dN/d\omega$ from nuclei

Analytic approximation for equivalent photon flux from nuclei

$$\frac{dN}{d\omega}\Big|_{A} = \frac{2Z^{2}\alpha_{em}}{\pi\omega} \left[\bar{\eta}K_{0}(\bar{\eta})K_{1}(\bar{\eta}) - \frac{\bar{\eta}^{2}}{2}U(\bar{\eta}) \right]$$

where $K_0(\eta)$ and $K_1(\eta)$ are the modified Bessel functions

$$\bar{\eta} = \omega(R_{h_1} + R_{h_2})/\gamma_L$$
 and $\mathcal{U}(\bar{\eta}) = K_1^2(\bar{\eta}) - K_0^2(\bar{\eta})$

- γ_L is the lorentz boost of a single beam
 - $R_p = 0.6 \text{fm}$ and $R_A = 1.2 \text{A}^{1/3}$
 - Absortive corrections can be disregarded at b > R_{h1} + R_{h2}
 - At b $< R_{h1} + R_{h2}$ the photon flux is zero

PHYSICAL REVIEW D 88, 054025 (2013)

Photon flux, $dN/d\omega$ from proton

\bigcirc^p

Analytic approximation for equivalent photon flux from proton

$$\begin{aligned} \frac{dN}{d\omega} \Big|_{p} &= \frac{\alpha_{\rm em}}{2\pi\omega} \bigg[1 + \bigg(1 - \frac{2\omega}{\sqrt{s}} \bigg)^{2} \bigg] \\ &\times \bigg(\ln\Omega - \frac{11}{6} + \frac{3}{\Omega} - \frac{3}{2\Omega^{2}} + \frac{1}{3\Omega^{3}} \bigg) \end{aligned}$$

with the notation $\Omega = 1 + [(0.71 \text{ GeV}^2)/Q_{\min}^2]$

$$Q_{\min}^2 = \omega^2 / [\gamma_L^2 (1 - 2\omega / \sqrt{s})] \approx (\omega / \gamma_L)^2$$

- γ_L is the lorentz boost of a single beam
 - Derived from Weizsäcker Williams method
 - Using elastic proton from factor

PHYSICAL REVIEW D 88, 054025 (2013)

э

< ロ > < 同 > < 回 > < 回 > < 回 > <

Studying azimuthal correlations ep vs γp

- ▶ Significant correlation coefficients as a function of multiplicity
 - \rightarrow Very low multiplicities for ee, ep and $\gamma {\rm p}$ systems
 - \rightarrow Higher multiplicity in $\gamma {\rm Pb}$ allowing nonflow substraction

ATLAS: PRC 104, 014903 (2021) H1: QM 2022, Chuan Sun

< □ > < 凸

γp from pp and pPb; is track multiplicity consistent?

- ▶ EPA flux from proton instead of Pb nuclei
- Multiplicity distribution

$$\label{eq:trk} \begin{split} &< \mathrm{N_{trk}} > \mathsf{PYTHIA8} \text{ pp sim}) = 3.026 \text{ (1.5M events)} \\ &< \mathrm{N_{trk}} > (\mathsf{PYTHIA8} \text{ pPb sim}) = 2.89 \text{ (37M Events)} \\ &< \mathrm{N_{trk}} > (\mathsf{pPb} \text{ CMS Data}) = 2.92 \end{split}$$

Significant non-zero v₂

- Substracting non-flow contribution using template fitting method

< A

Significant non-zero v₂

- Substracting non-flow contribution using template fitting method

Photon-proton (γp); ZEUS within ep 318 GeV collisions

- No Multiparton Interactions (MPI) scenario disfavored
 - 4-particle cumulant positive in ep photoproduction and negative in non-central heavy-ion collisions

JHEP 12 (2021) 102 javier.murillo@cern.ch

Recent probes in e^+e^- ; ALEPH (91 GeV) and Belle (10.52 GeV)

Confidence limits on associated yield as a function of N_{trk} have been set

Phys. Rev. Lett. 123, 212002 (2019) arXiv:2201.01694 [hep-ex]